5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 10
Oct.  2018
Turn off MathJax
Article Contents

Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability

doi: 10.1016/j.jgg.2018.08.003
More Information
  • Corresponding author: E-mail address: yzxing@mail.hzau.edu.cn (Yongzhong Xing)
  • Received Date: 2018-04-26
  • Accepted Date: 2018-08-28
  • Rev Recd Date: 2018-07-17
  • Available Online: 2018-10-22
  • Publish Date: 2018-10-20
  • The fungus Magnaporthe oryzae threatens the rice production of Kongyu 131 (KY131), a leading japonica variety in Northeast China. In this study, two rice lines, KP1 and KP2-Hd1, were obtained by introgressing the blast resistance genes Pi1 and Pi2 into KY131, respectively. However, both lines headed later than KY131. RICE60K SNP array analysis showed that Hd1 closely linked to Pi2 was introgressed into KP2-Hd1, and the linkage drag of Hd1 was broken by recombination. On the other hand, no known flowering genes were introgressed into KP1. Gene diagnosis by resequencing six flowering genes showed that KP1 carried functional Hd16 and Ghd8 alleles. Due to its suppression role in heading under long-day conditions, Ghd8 was chosen as the target for gene editing to disrupt its function. Four sgRNAs targeting different sites within Ghd8 were utilized to induce large-deletion mutations, which were easy to detect via agarose gel electrophoresis. All the ghd8-mutated KP1 lines were resistant to rice blast disease and headed earlier than the control KP1, even than KY131, under natural long-day conditions, which ensures its growth in Northeast China. This study confirmed that a combination of gene diagnosis and targeted gene editing is a highly efficient way to quickly eliminate undesired traits in a breeding line.
  • loading
  • [1]
    Cai, Y., Chen, L., Liu, X. et al. Plant Biotechnol. J., 16 (2018),pp. 176-185
    [2]
    Chen, H., Xie, W., He, H. et al. A high-density SNP genotyping array for rice biology and molecular breeding Mol. Plant, 7 (2014),pp. 541-553
    [3]
    Dean, R., Van Kan, J.A., Pretorius, Z.A. et al. The Top 10 fungal pathogens in molecular plant pathology Mol. Plant Pathol., 13 (2012),pp. 414-430
    [4]
    Deng, Y., Zhai, K., Xie, Z. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance Science, 355 (2017),pp. 962-965
    [5]
    Deng, Y., Zhu, X., Shen, Y. et al. Theor. Appl. Genet., 113 (2006),pp. 705-713
    [6]
    Du, A., Tian, W., Wei, M. et al. The DTH8-Hd1 module mediates day length-dependent regulation of rice flowering Mol. Plant, 10 (2017),pp. 948-961
    [7]
    Fujino, K., Yamanouchi, U., Yano, M. Theor. Appl. Genet., 126 (2013),pp. 611-618
    [8]
    Gao, H., Jin, M., Zheng, X.M. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 16337-16342
    [9]
    Hayashi, K., Hashimoto, N., Daigen, M. et al. Theor. Appl. Genet., 108 (2004),pp. 1212-1220
    [10]
    Hori, K., Ogiso-Tanaka, E., Matsubara, K. et al. Plant J., 76 (2013),pp. 36-46
    [11]
    Hua, L., Wu, J., Chen, C. et al. Theor. Appl. Genet., 125 (2012),pp. 1047-1055
    [12]
    Izawa, T. J. Exp. Bot., 58 (2007),pp. 3091-3097
    [13]
    Jiang, H.C., Feng, Y.T., Bao, L. et al. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding Mol. Breeding, 30 (2012),pp. 1679-1688
    [14]
    Jiang, J., Mou, T., Yu, H. et al. Rice, 8 (2015),p. 11
    [15]
    Jiang, N., Li, Z., Wu, J. et al. Rice, 5 (2012),p. 29
    [16]
    Khanna, A., Sharma, V., Ellur, R.K. et al. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice Theor. Appl. Genet., 128 (2015),pp. 1243-1259
    [17]
    Koo, B.H., Yoo, S.C., Park, J.W. et al. Mol. Plant, 6 (2013),pp. 1877-1888
    [18]
    Kwon, C.T., Yoo, S.C., Koo, B.H. et al. Plant Cell Environ., 37 (2014),pp. 101-112
    [19]
    Lei, Y., Lu, L., Liu, H.Y. et al. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants Mol. Plant, 7 (2014),pp. 1494-1496
    [20]
    Leung, H., Raghavan, C., Zhou, B. et al. Allele mining and enhanced genetic recombination for rice breeding Rice, 8 (2015),p. 34
    [21]
    Li, M., Li, X., Zhou, Z. et al. Front. Plant Sci., 7 (2016),p. 377
    [22]
    Li, X., Liu, H., Wang, M. et al. J. Integr. Plant Biol., 57 (2015),pp. 698-707
    [23]
    Li, X., Zhou, W., Ren, Y. et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing J. Genet. Genomics, 44 (2017),pp. 175-178
    [24]
    Li, Y., Xiao, J., Chen, L. et al. Rice functional genomics research: past decade and future Mol. Plant, 11 (2018),pp. 359-380
    [25]
    Li, Y.B., Wu, C.J., Jiang, G.H. et al. Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects Plant Breeding, 126 (2007),pp. 541-547
    [26]
    Liu, G., Lu, G., Zeng, L. et al. Mol. Genet. Genomics, 267 (2002),pp. 472-480
    [27]
    Lu, L., Yan, W., Xue, W. et al. PLoS One, 7 (2012)
    [28]
    Luan, W., Chen, H., Fu, Y. et al. The effect of the crosstalk between photoperiod and temperature on the heading-date in rice PLoS One, 4 (2009)
    [29]
    Luo, W., Huang, M., Guo, T. et al. Plant Breeding, 136 (2017),pp. 67-73
    [30]
    Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
    [31]
    Mackill, D., Bonman, J. Inheritance of blast resistance in near-isogenic lines of rice Phytopathology, 82 (1992),pp. 746-749
    [32]
    Matsubara, K., Hori, K., Ogiso-Tanaka, E. et al. Front. Plant Sci., 5 (2014),p. 193
    [33]
    Meyer, R.S., Purugganan, M.D. Evolution of crop species: genetics of domestication and diversification Nat. Rev. Genet., 14 (2013),pp. 840-852
    [34]
    Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucleic Acids Res., 8 (1980),pp. 4321-4325
    [35]
    Qu, S., Liu, G., Zhou, B. et al. Genetics, 172 (2006),pp. 1901-1914
    [36]
    Rao, Y., Li, Y., Qian, Q. Recent progress on molecular breeding of rice in China Plant Cell Rep., 33 (2014),pp. 551-564
    [37]
    Su, J., Wang, W., Han, J. et al. Theor. Appl. Genet., 128 (2015),pp. 2213-2225
    [38]
    Sun, Y., Jiao, G., Liu, Z. et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes Front. Plant Sci., 8 (2017),p. 298
    [39]
    Takahashi, Y., Shomura, A., Sasaki, T. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 7922-7927
    [40]
    Takahashi, Y., Teshima, K.M., Yokoi, S. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 4555-4560
    [41]
    Telebanco-Yanoria, M.J., Koide, Y., Fukuta, Y. et al. Breed Sci., 60 (2010),pp. 629-638
    [42]
    Wang, Y., Cheng, X., Shan, Q. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [43]
    Wei, X., Xu, J., Guo, H. et al. Plant Physiol., 153 (2010),pp. 1747-1758
    [44]
    Xu, R., Yang, Y., Qin, R. et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice J. Genet. Genomics, 43 (2016),pp. 529-532
    [45]
    Xu, R.F., Li, H., Qin, R.Y. et al. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system Sci. Rep., 5 (2015),p. 11491
    [46]
    Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [47]
    Yan, W., Liu, H., Zhou, X. et al. Cell Res., 23 (2013),pp. 969-971
    [48]
    Yan, W.H., Wang, P., Chen, H.X. et al. Mol. Plant, 4 (2011),pp. 319-330
    [49]
    Yano, M., Harushima, Y., Nagamura, Y. et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map Theor. Appl. Genet., 95 (1997),pp. 1025-1032
    [50]
    Yano, M., Katayose, Y., Ashikari, M. et al. Plant Cell, 12 (2000),pp. 2473-2484
    [51]
    Yokoo, M., Kikuchi, F., Nakane, A. et al. Genetical analysis of heading date by means of close linkage with blast resistance in rice Bull. Natl. Inst. Agric. Sci., D (1980),pp. 95-126
    [52]
    Yu, H.H., Xie, W.B., Li, J. et al. A whole-genome SNP array (RICE6K) for genomic breeding in rice Plant Biotechnol. J., 12 (2014),pp. 28-37
    [53]
    Zhang, J., Zhou, X., Yan, W. et al. New Phytol., 208 (2015),pp. 1056-1066
    [54]
    Zhang, Q. Strategies for developing green super rice Proc. Natl. Acad. Sci. U.S.A., 104 (2007),pp. 16402-16409
    [55]
    Zhang, Z., Hu, W., Shen, G. et al. Sci. Rep., 7 (2017),p. 5388
    [56]
    Zhang, Z.H., Wang, K., Guo, L. et al. PLoS One, 7 (2012)
    [57]
    Zhou, B., Qu, S., Liu, G. et al. Mol. Plant Microbe Interact., 19 (2006),pp. 1216-1228
    [58]
    Zhou, H., He, M., Li, J. et al. Sci. Rep., 6 (2016),p. 37395
    [59]
    Zhu, X., Chen, S., Yang, J. et al. Theor. Appl. Genet., 124 (2012),pp. 1295-1304
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return