5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 8
Aug.  2018
Turn off MathJax
Article Contents

Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells

doi: 10.1016/j.jgg.2018.08.001
More Information
  • Corresponding author: E-mail address: xuhong@scu.edu.cn (Hong Xu)
  • Received Date: 2018-01-10
  • Accepted Date: 2018-08-05
  • Rev Recd Date: 2018-08-03
  • Available Online: 2018-08-24
  • Publish Date: 2018-08-20
  • In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Anderson, R.G., Brenner, R.M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct J. Cell Biol., 50 (1971),pp. 10-34
    [2]
    Archer, J., Solomon, F. Deconstructing the microtubule-organizing center Cell, 76 (1994),pp. 589-591
    [3]
    Baas, A.F., Kuipers, J., van der Wel, N.N. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD Cell, 116 (2004),pp. 457-466
    [4]
    Bacallao, R., Antony, C., Dotti, C. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium J. Cell Biol., 109 (1989),pp. 2817-2832
    [5]
    Bartolini, F., Gundersen, G.G. Generation of noncentrosomal microtubule arrays J. Cell Sci., 119 (2006),pp. 4155-4163
    [6]
    Berti, C., Fontanella, B., Ferrentino, R. et al. Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules BMC Cell Biol., 5 (2004),p. 9
    [7]
    Biemar, F., Argenton, F., Schmidtke, R. et al. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet Dev. Biol., 230 (2001),pp. 189-203
    [8]
    Bre, M.H., Kreis, T.E., Karsenti, E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules J. Cell Biol., 105 (1987),pp. 1283-1296
    [9]
    Brodu, V., Baffet, A.D., Le Droguen, P.M. et al. Dev. Cell, 18 (2010),pp. 790-801
    [10]
    Dalgin, G., Ward, A.B., Hao le, T. et al. Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas Development, 138 (2011),pp. 4597-4608
    [11]
    Drubin, D.G., Nelson, W.J. Origins of cell polarity Cell, 84 (1996),pp. 335-344
    [12]
    Eaton, S., Simons, K. Apical, basal, and lateral cues for epithelial polarization Cell, 82 (1995),pp. 5-8
    [13]
    Eno, C., Solanki, B., Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition Development, 143 (2016),pp. 1585-1599
    [14]
    Feldman, J.L., Priess, J.R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization Curr. Biol., 22 (2012),pp. 575-582
    [15]
    Huang, H., Vogel, S.S., Liu, N. et al. Analysis of pancreatic development in living transgenic zebrafish embryos Mol. Cell. Endocrinol., 177 (2001),pp. 117-124
    [16]
    Jankovics, F., Brunner, D. Dev. Cell, 11 (2006),pp. 375-385
    [17]
    Karsenti, E., Nedelec, F., Surrey, T. Modelling microtubule patterns Nat. Cell Biol., 8 (2006),pp. 1204-1211
    [18]
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [19]
    Kunimoto, K., Yamazaki, Y., Nishida, T. et al. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet Cell, 148 (2012),pp. 189-200
    [20]
    Lee, C., Scherr, H.M., Wallingford, J.B. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change Development, 134 (2007),pp. 1431-1441
    [21]
    Luders, J., Stearns, T. Microtubule-organizing centres: a re-evaluation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 161-167
    [22]
    Macdonald, R. Zebrafish immunohistochemistry Meth. Mol. Biol., 127 (1999),pp. 77-88
    [23]
    Mogensen, M.M., Malik, A., Piel, M. et al. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein J. Cell Sci., 113 (2000),pp. 3013-3023
    [24]
    Nashchekin, D., Fernandes, A.R., St Johnston, D. Dev. Cell, 38 (2016),pp. 61-72
    [25]
    Navis, A., Marjoram, L., Bagnat, M. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish Development, 140 (2013),pp. 1703-1712
    [26]
    Nejsum, L.N., Nelson, W.J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity J. Cell Biol., 178 (2007),pp. 323-335
    [27]
    Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis Dev. Biol., 286 (2005),pp. 114-135
    [28]
    Rajasekaran, A.K., Hojo, M., Huima, T. et al. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions J. Cell Biol., 132 (1996),pp. 451-463
    [29]
    Rodriguez-Fraticelli, A.E., Auzan, M., Alonso, M.A. et al. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis J. Cell Biol., 198 (2012),pp. 1011-1023
    [30]
    Sanchez, A.D., Feldman, J.L. Microtubule-organizing centers: from the centrosome to non-centrosomal sites Curr. Opin. Cell Biol., 44 (2017),pp. 93-101
    [31]
    Saraga-Babic, M., Vukojevic, K., Bocina, I. et al. Ciliogenesis in normal human kidney development and post-natal life Pediatr. Nephrol., 27 (2012),pp. 55-63
    [32]
    Suzuki, A., Yamanaka, T., Hirose, T. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures J. Cell Biol., 152 (2001),pp. 1183-1196
    [33]
    Suzuki, M., Hara, Y., Takagi, C. et al. Development, 137 (2010),pp. 2329-2339
    [34]
    Tanaka, N., Meng, W., Nagae, S. et al. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 20029-20034
    [35]
    Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [36]
    Toya, M., Takeichi, M. Organization of non-centrosomal microtubules in epithelial cells Cell Struct. Funct., 41 (2016),pp. 127-135
    [37]
    Wang, S., Wu, D., Quintin, S. et al. eLife, 4 (2015)
    [38]
    Wodarz, A. Establishing cell polarity in development Nat. Cell Biol., 4 (2002),pp. E39-E44
    [39]
    Yee, N.S., Lorent, K., Pack, M. Exocrine pancreas development in zebrafish Dev. Biol., 284 (2005),pp. 84-101
    [40]
    Zecchin, E., Mavropoulos, A., Devos, N. et al. Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates Dev. Biol., 268 (2004),pp. 174-184
    [41]
    Zhao, H., Zhu, L., Zhu, Y. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis Nat. Cell Biol., 15 (2013),pp. 1434-1444
    [42]
    Zhou, K., Rolls, M.M., Hall, D.H. et al. J. Cell Biol., 186 (2009),pp. 229-241
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return