[1] |
Anderson, R.G., Brenner, R.M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct J. Cell Biol., 50 (1971),pp. 10-34
|
[2] |
Archer, J., Solomon, F. Deconstructing the microtubule-organizing center Cell, 76 (1994),pp. 589-591
|
[3] |
Baas, A.F., Kuipers, J., van der Wel, N.N. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD Cell, 116 (2004),pp. 457-466
|
[4] |
Bacallao, R., Antony, C., Dotti, C. et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium J. Cell Biol., 109 (1989),pp. 2817-2832
|
[5] |
Bartolini, F., Gundersen, G.G. Generation of noncentrosomal microtubule arrays J. Cell Sci., 119 (2006),pp. 4155-4163
|
[6] |
Berti, C., Fontanella, B., Ferrentino, R. et al. Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules BMC Cell Biol., 5 (2004),p. 9
|
[7] |
Biemar, F., Argenton, F., Schmidtke, R. et al. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet Dev. Biol., 230 (2001),pp. 189-203
|
[8] |
Bre, M.H., Kreis, T.E., Karsenti, E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules J. Cell Biol., 105 (1987),pp. 1283-1296
|
[9] |
Brodu, V., Baffet, A.D., Le Droguen, P.M. et al. Dev. Cell, 18 (2010),pp. 790-801
|
[10] |
Dalgin, G., Ward, A.B., Hao le, T. et al. Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas Development, 138 (2011),pp. 4597-4608
|
[11] |
Drubin, D.G., Nelson, W.J. Origins of cell polarity Cell, 84 (1996),pp. 335-344
|
[12] |
Eaton, S., Simons, K. Apical, basal, and lateral cues for epithelial polarization Cell, 82 (1995),pp. 5-8
|
[13] |
Eno, C., Solanki, B., Pelegri, F. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition Development, 143 (2016),pp. 1585-1599
|
[14] |
Feldman, J.L., Priess, J.R. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization Curr. Biol., 22 (2012),pp. 575-582
|
[15] |
Huang, H., Vogel, S.S., Liu, N. et al. Analysis of pancreatic development in living transgenic zebrafish embryos Mol. Cell. Endocrinol., 177 (2001),pp. 117-124
|
[16] |
Jankovics, F., Brunner, D. Dev. Cell, 11 (2006),pp. 375-385
|
[17] |
Karsenti, E., Nedelec, F., Surrey, T. Modelling microtubule patterns Nat. Cell Biol., 8 (2006),pp. 1204-1211
|
[18] |
Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
|
[19] |
Kunimoto, K., Yamazaki, Y., Nishida, T. et al. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet Cell, 148 (2012),pp. 189-200
|
[20] |
Lee, C., Scherr, H.M., Wallingford, J.B. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change Development, 134 (2007),pp. 1431-1441
|
[21] |
Luders, J., Stearns, T. Microtubule-organizing centres: a re-evaluation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 161-167
|
[22] |
Macdonald, R. Zebrafish immunohistochemistry Meth. Mol. Biol., 127 (1999),pp. 77-88
|
[23] |
Mogensen, M.M., Malik, A., Piel, M. et al. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein J. Cell Sci., 113 (2000),pp. 3013-3023
|
[24] |
Nashchekin, D., Fernandes, A.R., St Johnston, D. Dev. Cell, 38 (2016),pp. 61-72
|
[25] |
Navis, A., Marjoram, L., Bagnat, M. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish Development, 140 (2013),pp. 1703-1712
|
[26] |
Nejsum, L.N., Nelson, W.J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity J. Cell Biol., 178 (2007),pp. 323-335
|
[27] |
Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis Dev. Biol., 286 (2005),pp. 114-135
|
[28] |
Rajasekaran, A.K., Hojo, M., Huima, T. et al. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions J. Cell Biol., 132 (1996),pp. 451-463
|
[29] |
Rodriguez-Fraticelli, A.E., Auzan, M., Alonso, M.A. et al. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis J. Cell Biol., 198 (2012),pp. 1011-1023
|
[30] |
Sanchez, A.D., Feldman, J.L. Microtubule-organizing centers: from the centrosome to non-centrosomal sites Curr. Opin. Cell Biol., 44 (2017),pp. 93-101
|
[31] |
Saraga-Babic, M., Vukojevic, K., Bocina, I. et al. Ciliogenesis in normal human kidney development and post-natal life Pediatr. Nephrol., 27 (2012),pp. 55-63
|
[32] |
Suzuki, A., Yamanaka, T., Hirose, T. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures J. Cell Biol., 152 (2001),pp. 1183-1196
|
[33] |
Suzuki, M., Hara, Y., Takagi, C. et al. Development, 137 (2010),pp. 2329-2339
|
[34] |
Tanaka, N., Meng, W., Nagae, S. et al. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 20029-20034
|
[35] |
Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
|
[36] |
Toya, M., Takeichi, M. Organization of non-centrosomal microtubules in epithelial cells Cell Struct. Funct., 41 (2016),pp. 127-135
|
[37] |
Wang, S., Wu, D., Quintin, S. et al. eLife, 4 (2015)
|
[38] |
Wodarz, A. Establishing cell polarity in development Nat. Cell Biol., 4 (2002),pp. E39-E44
|
[39] |
Yee, N.S., Lorent, K., Pack, M. Exocrine pancreas development in zebrafish Dev. Biol., 284 (2005),pp. 84-101
|
[40] |
Zecchin, E., Mavropoulos, A., Devos, N. et al. Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates Dev. Biol., 268 (2004),pp. 174-184
|
[41] |
Zhao, H., Zhu, L., Zhu, Y. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis Nat. Cell Biol., 15 (2013),pp. 1434-1444
|
[42] |
Zhou, K., Rolls, M.M., Hall, D.H. et al. J. Cell Biol., 186 (2009),pp. 229-241
|