[1] |
Akavia, U.D., Litvin, O., Kim, J. et al. An integrated approach to uncover drivers of cancer Cell, 143 (2010),pp. 1005-1017
|
[2] |
Barwe, S.P., Anilkumar, G., Moon, S.Y. et al. Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility Mol. Biol. Cell, 16 (2005),pp. 1082-1094
|
[3] |
Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing JRSSB, 57 (1995),pp. 289-300
|
[4] |
Blackburn, A., Almeida, M., Dean, A. et al. Effects of copy number variable regions on local gene expression in white blood cells of Mexican Americans Eur. J. Hum. Genet., 23 (2015),pp. 1229-1235
|
[5] |
Butte, A.J., Tamayo, P., Slonim, D. et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 12182-12186
|
[6] |
Cheng, J., Levina, E., Wang, P. et al. Sparse ising models with covariates Biometrics, 70 (2014),pp. 943-953
|
[7] |
Csardi, G., Nepusz, T. The igraph software package for complex network research Inter. J. Complex Syst., 1695 (2006)
|
[8] |
Danaher, P., Wang, P., Witten, D.M. The joint graphical lasso for inverse covariance estimation across multiple classes JRSSB, 76 (2014),pp. 373-397
|
[9] |
Dimova, I., Tafradzhiska-Hadzhiolova, R., Maslyankov, S. et al. Whole genome microarray analysis in invasive ductal breast cancer revealed the most significant changes affect chromosomes 1, 8, 17 and 20 Int. J. Sci., 4 (2015),pp. 8-17
|
[10] |
Eddelbuettel, D.
|
[11] |
Eddelbuettel, D., Sanderson, C. RcppArmadillo: accelerating R with high-performance C++ linear algebra Comput. Stat. Data Anal., 71 (2014),pp. 1054-1063
|
[12] |
Ellis, M.J., Gillette, M., Carr, S.A. et al. Connecting genomic alterations to cancer biology with proteomics: the nci clinical proteomic tumor analysis consortium Cancer Disc., 3 (2013),pp. 1108-1112
|
[13] |
Fabregat, A., Jupe, S., Matthews, L. et al. The reactome pathway knowledge base Nucleic Acids Res., 46 (2018),pp. 649-655
|
[14] |
Franceschini, A., Szklarczyk, D., Frankild, S. et al. String v9.1: protein-protein interaction networks, with increased coverage and integration Nucleic Acids Res., 41 (2013),pp. 808-815
|
[15] |
Friedman, J., Hastie, T., Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso Biostatistics, 9 (2008),pp. 432-441
|
[16] |
Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
|
[17] |
Grossman, M., Ben-Chetrit, N., Zhuravlev, A. et al. Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix Cancer Res., 76 (2016),pp. 4249-4258
|
[18] |
Haas, M., Wang, H., Tian, J. et al. J. Biol. Chem., 277 (2002),pp. 18694-18702
|
[19] |
Han, Y., Sun, S., Zhao, M. et al. Cyc1 predicts poor prognosis in patients with breast cancer Dis. Markers, 2016 (2016),pp. 1-9
|
[20] |
Kanehisa, M., Furumichi, M., Tanabe, M. et al. Kegg: new perspectives on genomes, pathways, diseases and drugs Nucleic Acids Res., 45 (2017),pp. 353-361
|
[21] |
Kaveh, F., Baumbusch, L.O., Nebdal, D. et al. A systematic comparison of copy number alterations in four types of female cancer BMC Cancer, 16 (2016),p. 913
|
[22] |
Kininis, M., Isaacs, G.D., Core, L.J. et al. Postrecruitment regulation of RNA polymerase II directs rapid signaling responses at the promoters of estrogen target genes Mol. Cell. Biol., 29 (2009),pp. 1123-1133
|
[23] |
Kpetemey, M., Chaudhary, P., Van Treuren, T. et al. Mien1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics Oncotarget, 7 (2016),pp. 54913-54924
|
[24] |
Li, L., Liu, B., Zhang, X. et al. The oncoprotein hbxip promotes migration of breast cancer cells via gcn5-mediated microtubule acetylation Biochem. Biophys. Res. Commun., 458 (2015),pp. 720-725
|
[25] |
Li, S., Hsu, L., Peng, J. et al. Bootstrap inference for network construction Ann. Appl. Stat., 7 (2013),pp. 391-417
|
[26] |
Li, Z., Langhans, S.A. Transcriptional regulators of Na, K ATPase subunits Front. Cell Dev. Biol., 3 (2015),p. 66
|
[27] |
Litan, A., Langhans, S.A. Cancer as a channelopathy: ion channels and pumps in tumor development and progression Front. Cell. Neurosci., 9 (2015),p. 86
|
[28] |
Lu, D., Wu, Y., Wang, Y. et al. Crept accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes Cancer Cell, 21 (2012),pp. 92-104
|
[29] |
Maurizio, E., Wiśniewski, J.R., Ciani, Y. et al. Translating proteomic into functional data: an high mobility group a1 (hmga1) proteomic signature has prognostic value in breast cancer Mol. Cell. Proteomics, 15 (2016),pp. 109-123
|
[30] |
Mayuko, C., Kiyoshi, T., Ai, S. et al. Cancer Sci., 108 (2017),pp. 1510-1519
|
[31] |
Meinshausen, N., Bühlmann, P. High-dimensional graphs and variable selection with the lasso Ann. Stat., 34 (2006),pp. 1436-1462
|
[32] |
Mertins, P., Mani, D.R., Ruggles, K.V. et al. Proteogenomics connects somatic mutations to signalling in breast cancer Nature, 534 (2016),pp. 55-62
|
[33] |
Mijatovic, T., Ingrassia, L., Facchini, V. et al. Expert Opin. Ther. Targets, 12 (2008),pp. 1403-1417
|
[34] |
Newman, M.E.J., Girvan, M. Finding and evaluating community structure in networks Phys. Rev. E, 69 (2004)
|
[35] |
Patidar, P.L., Motea, E.A., Fattah, F.J. et al. The kub5-hera/rprd1b interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair Nucleic Acids Res., 44 (2016),pp. 1718-1731
|
[36] |
Paulovich, A.G., Billheimer, D., Ham, A.-J.L. et al. Interlaboratory study characterizing a yeast performance standard for benchmarking lc-ms platform performance Mol. Cell. Proteomics, 9 (2010),pp. 242-254
|
[37] |
Peng, J., Wang, P., Zhou, N. et al. Partial correlation estimation by joint sparse regression models JASA, 104 (2009),pp. 735-746
|
[38] |
Peng, J., Zhu, J., Bergamaschi, A. et al. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer Ann. Appl. Stat., 4 (2010),pp. 53-77
|
[39] |
Piacente, F., Caffa, I., Ravera, S. et al. Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to nampt inhibitors, and DNA repair Cancer Res., 77 (2017),pp. 3857-3869
|
[40] |
Ren, F., Wang, R., Zhang, Y. et al. Characterization of a monoclonal antibody against crept, a novel protein highly expressed in tumors Monoclon. Antibodies Immunodiagn. Immunother., 33 (2014),pp. 401-408
|
[41] |
Rothman, A., Levina, E., Zhu, J. Sparse multivariate regression with covariance estimation J. Comput. Graph Stat., 19 (2010),pp. 947-962
|
[42] |
Sahlberg, K.K., Hongisto, V., Edgren, H. et al. The her2 amplicon includes several genes required for the growth and survival of her2 positive breast cancer cells Mol. Oncol., 7 (2013),pp. 392-401
|
[43] |
Samarakkody, A., Abbas, A., Scheidegger, A. et al. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition Nucleic Acids Res., 43 (2015),pp. 3938-3949
|
[44] |
Schäfer, J., Strimmer, K. An empirical bayes approach to inferring large-scale gene association networks Bioinformatics, 21 (2004),p. 754
|
[45] |
Shannon, P., Markiel, A., Ozier, O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res., 13 (2003),pp. 2498-2504
|
[46] |
Sun, Y., Liu, X., Zhang, Q. et al. Tumor Biol., 37 (2016),pp. 4963-4972
|
[47] |
The Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours Nature, 490 (2012),pp. 61-70
|
[48] |
Wang, P.
|
[49] |
Wang, P., Chao, D., Hsu, L. Learning networks from high dimensional binary data: an application to genomic instability data Biometrics, 67 (2011),pp. 164-173
|
[50] |
Wolff, A.C., Hammond, M.E.H., Hicks, D.G. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update Arch. Pathol. Lab Med., 138 (2013),pp. 241-256
|
[51] |
Yuan, M., Lin, Y. Model selection and estimation in regression with grouped variables JRSSB, 68 (2006),pp. 49-67
|
[52] |
Zhang, H., Liu, T., Zhang, Z. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer Cell, 166 (2016),pp. 755-765
|
[53] |
Zhang, L., Kim, S. Learning gene networks under SNP perturbations using eQTL datasets PLoS Comput. Biol., 10 (2014)
|