5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 7
Jul.  2018
Turn off MathJax
Article Contents

Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap

doi: 10.1016/j.jgg.2018.07.003
More Information
  • Corresponding author: E-mail address: chris.conley@hci.utah.edu (Christopher J. Conley); E-mail address: jiepeng@ucdavis.edu (Jie Peng)
  • Received Date: 2018-01-15
  • Accepted Date: 2018-07-09
  • Rev Recd Date: 2018-07-09
  • Available Online: 2018-07-26
  • Publish Date: 2018-07-20
  • We propose a novel conditional graphical model — spaceMap — to construct gene regulatory networks from multiple types of high dimensional omic profiles. A motivating application is to characterize the perturbation of DNA copy number alterations (CNAs) on downstream protein levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly models high dimensional protein levels as responses and high dimensional CNAs as predictors. In this setup, spaceMap infers an undirected network among proteins together with a directed network encoding how CNAs perturb the protein network. spaceMap can be applied to learn other types of regulatory relationships from high dimensional molecular profiles, especially those exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting regulatory relationships over competing methods. Additionally, spaceMap includes a network analysis toolkit for biological interpretation of inferred networks. We applies spaceMap to the CNAs, gene expression and proteomics data sets from CPTAC-TCGA breast () and ovarian () cancer studies. Each cancer exhibits disruption of ‘ion transmembrane transport’ and ‘regulation from RNA polymerase II promoter’ by CNA events unique to each cancer. Moreover, using protein levels as a response yields a more functionally-enriched network than using RNA expressions in both cancer types. The network results also help to pinpoint crucial cancer genes and provide insights on the functional consequences of important CNA in breast and ovarian cancers. The R package spaceMap — including vignettes and documentation — is hosted on https://topherconley.github.io/spacemap.
  • loading
  • [1]
    Akavia, U.D., Litvin, O., Kim, J. et al. An integrated approach to uncover drivers of cancer Cell, 143 (2010),pp. 1005-1017
    [2]
    Barwe, S.P., Anilkumar, G., Moon, S.Y. et al. Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility Mol. Biol. Cell, 16 (2005),pp. 1082-1094
    [3]
    Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing JRSSB, 57 (1995),pp. 289-300
    [4]
    Blackburn, A., Almeida, M., Dean, A. et al. Effects of copy number variable regions on local gene expression in white blood cells of Mexican Americans Eur. J. Hum. Genet., 23 (2015),pp. 1229-1235
    [5]
    Butte, A.J., Tamayo, P., Slonim, D. et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 12182-12186
    [6]
    Cheng, J., Levina, E., Wang, P. et al. Sparse ising models with covariates Biometrics, 70 (2014),pp. 943-953
    [7]
    Csardi, G., Nepusz, T. The igraph software package for complex network research Inter. J. Complex Syst., 1695 (2006)
    [8]
    Danaher, P., Wang, P., Witten, D.M. The joint graphical lasso for inverse covariance estimation across multiple classes JRSSB, 76 (2014),pp. 373-397
    [9]
    Dimova, I., Tafradzhiska-Hadzhiolova, R., Maslyankov, S. et al. Whole genome microarray analysis in invasive ductal breast cancer revealed the most significant changes affect chromosomes 1, 8, 17 and 20 Int. J. Sci., 4 (2015),pp. 8-17
    [10]
    Eddelbuettel, D.
    [11]
    Eddelbuettel, D., Sanderson, C. RcppArmadillo: accelerating R with high-performance C++ linear algebra Comput. Stat. Data Anal., 71 (2014),pp. 1054-1063
    [12]
    Ellis, M.J., Gillette, M., Carr, S.A. et al. Connecting genomic alterations to cancer biology with proteomics: the nci clinical proteomic tumor analysis consortium Cancer Disc., 3 (2013),pp. 1108-1112
    [13]
    Fabregat, A., Jupe, S., Matthews, L. et al. The reactome pathway knowledge base Nucleic Acids Res., 46 (2018),pp. 649-655
    [14]
    Franceschini, A., Szklarczyk, D., Frankild, S. et al. String v9.1: protein-protein interaction networks, with increased coverage and integration Nucleic Acids Res., 41 (2013),pp. 808-815
    [15]
    Friedman, J., Hastie, T., Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso Biostatistics, 9 (2008),pp. 432-441
    [16]
    Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
    [17]
    Grossman, M., Ben-Chetrit, N., Zhuravlev, A. et al. Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix Cancer Res., 76 (2016),pp. 4249-4258
    [18]
    Haas, M., Wang, H., Tian, J. et al. J. Biol. Chem., 277 (2002),pp. 18694-18702
    [19]
    Han, Y., Sun, S., Zhao, M. et al. Cyc1 predicts poor prognosis in patients with breast cancer Dis. Markers, 2016 (2016),pp. 1-9
    [20]
    Kanehisa, M., Furumichi, M., Tanabe, M. et al. Kegg: new perspectives on genomes, pathways, diseases and drugs Nucleic Acids Res., 45 (2017),pp. 353-361
    [21]
    Kaveh, F., Baumbusch, L.O., Nebdal, D. et al. A systematic comparison of copy number alterations in four types of female cancer BMC Cancer, 16 (2016),p. 913
    [22]
    Kininis, M., Isaacs, G.D., Core, L.J. et al. Postrecruitment regulation of RNA polymerase II directs rapid signaling responses at the promoters of estrogen target genes Mol. Cell. Biol., 29 (2009),pp. 1123-1133
    [23]
    Kpetemey, M., Chaudhary, P., Van Treuren, T. et al. Mien1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics Oncotarget, 7 (2016),pp. 54913-54924
    [24]
    Li, L., Liu, B., Zhang, X. et al. The oncoprotein hbxip promotes migration of breast cancer cells via gcn5-mediated microtubule acetylation Biochem. Biophys. Res. Commun., 458 (2015),pp. 720-725
    [25]
    Li, S., Hsu, L., Peng, J. et al. Bootstrap inference for network construction Ann. Appl. Stat., 7 (2013),pp. 391-417
    [26]
    Li, Z., Langhans, S.A. Transcriptional regulators of Na, K ATPase subunits Front. Cell Dev. Biol., 3 (2015),p. 66
    [27]
    Litan, A., Langhans, S.A. Cancer as a channelopathy: ion channels and pumps in tumor development and progression Front. Cell. Neurosci., 9 (2015),p. 86
    [28]
    Lu, D., Wu, Y., Wang, Y. et al. Crept accelerates tumorigenesis by regulating the transcription of cell-cycle-related genes Cancer Cell, 21 (2012),pp. 92-104
    [29]
    Maurizio, E., Wiśniewski, J.R., Ciani, Y. et al. Translating proteomic into functional data: an high mobility group a1 (hmga1) proteomic signature has prognostic value in breast cancer Mol. Cell. Proteomics, 15 (2016),pp. 109-123
    [30]
    Mayuko, C., Kiyoshi, T., Ai, S. et al. Cancer Sci., 108 (2017),pp. 1510-1519
    [31]
    Meinshausen, N., Bühlmann, P. High-dimensional graphs and variable selection with the lasso Ann. Stat., 34 (2006),pp. 1436-1462
    [32]
    Mertins, P., Mani, D.R., Ruggles, K.V. et al. Proteogenomics connects somatic mutations to signalling in breast cancer Nature, 534 (2016),pp. 55-62
    [33]
    Mijatovic, T., Ingrassia, L., Facchini, V. et al. Expert Opin. Ther. Targets, 12 (2008),pp. 1403-1417
    [34]
    Newman, M.E.J., Girvan, M. Finding and evaluating community structure in networks Phys. Rev. E, 69 (2004)
    [35]
    Patidar, P.L., Motea, E.A., Fattah, F.J. et al. The kub5-hera/rprd1b interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair Nucleic Acids Res., 44 (2016),pp. 1718-1731
    [36]
    Paulovich, A.G., Billheimer, D., Ham, A.-J.L. et al. Interlaboratory study characterizing a yeast performance standard for benchmarking lc-ms platform performance Mol. Cell. Proteomics, 9 (2010),pp. 242-254
    [37]
    Peng, J., Wang, P., Zhou, N. et al. Partial correlation estimation by joint sparse regression models JASA, 104 (2009),pp. 735-746
    [38]
    Peng, J., Zhu, J., Bergamaschi, A. et al. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer Ann. Appl. Stat., 4 (2010),pp. 53-77
    [39]
    Piacente, F., Caffa, I., Ravera, S. et al. Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to nampt inhibitors, and DNA repair Cancer Res., 77 (2017),pp. 3857-3869
    [40]
    Ren, F., Wang, R., Zhang, Y. et al. Characterization of a monoclonal antibody against crept, a novel protein highly expressed in tumors Monoclon. Antibodies Immunodiagn. Immunother., 33 (2014),pp. 401-408
    [41]
    Rothman, A., Levina, E., Zhu, J. Sparse multivariate regression with covariance estimation J. Comput. Graph Stat., 19 (2010),pp. 947-962
    [42]
    Sahlberg, K.K., Hongisto, V., Edgren, H. et al. The her2 amplicon includes several genes required for the growth and survival of her2 positive breast cancer cells Mol. Oncol., 7 (2013),pp. 392-401
    [43]
    Samarakkody, A., Abbas, A., Scheidegger, A. et al. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition Nucleic Acids Res., 43 (2015),pp. 3938-3949
    [44]
    Schäfer, J., Strimmer, K. An empirical bayes approach to inferring large-scale gene association networks Bioinformatics, 21 (2004),p. 754
    [45]
    Shannon, P., Markiel, A., Ozier, O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res., 13 (2003),pp. 2498-2504
    [46]
    Sun, Y., Liu, X., Zhang, Q. et al. Tumor Biol., 37 (2016),pp. 4963-4972
    [47]
    The Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours Nature, 490 (2012),pp. 61-70
    [48]
    Wang, P.
    [49]
    Wang, P., Chao, D., Hsu, L. Learning networks from high dimensional binary data: an application to genomic instability data Biometrics, 67 (2011),pp. 164-173
    [50]
    Wolff, A.C., Hammond, M.E.H., Hicks, D.G. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update Arch. Pathol. Lab Med., 138 (2013),pp. 241-256
    [51]
    Yuan, M., Lin, Y. Model selection and estimation in regression with grouped variables JRSSB, 68 (2006),pp. 49-67
    [52]
    Zhang, H., Liu, T., Zhang, Z. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer Cell, 166 (2016),pp. 755-765
    [53]
    Zhang, L., Kim, S. Learning gene networks under SNP perturbations using eQTL datasets PLoS Comput. Biol., 10 (2014)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return