[1] |
Ahdesmaki, M.J., Gray, S.R., Johnson, J.H. et al. Disambiguate: An open-source application for disambiguating two species in next generation sequencing data from grafted samples F1000Res., 5 (2016),p. 2741
|
[2] |
Alizadeh, A.A., Aranda, V., Bardelli, A. et al. Toward understanding and exploiting tumor heterogeneity Nat. Med., 21 (2015),pp. 846-853
|
[3] |
Aparicio, S., Hidalgo, M., Kung, A.L. Examining the utility of patient-derived xenograft mouse models Nat. Rev. Cancer, 15 (2015),pp. 311-316
|
[4] |
Bawa, A., Anilakumar, K. Genetically modified foods: safety, risks and public concerns ‒ a review J. Food Sci. Technol., 50 (2013),pp. 1035-1046
|
[5] |
Bernardo, C., Costa, C., Sousa, N. et al. Patient-derived bladder cancer xenografts: a systematic review Transl. Res., 166 (2015),pp. 324-331
|
[6] |
Bruna, A., Rueda, O.M., Greenwood, W. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds Cell, 167 (2016),pp. 260-274
|
[7] |
Buckingham, E.M., Carpenter, J.E., Jackson, W. et al. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 256-261
|
[8] |
Callari, M., Batra, A.S., Batra, R.N. et al. Computational approach to discriminate human and mouse sequences in patient-derived tumour xenografts BMC Genomics, 19 (2018),p. 19
|
[9] |
Calles, A., Rubio-Viqueira, B., Hidalgo, M. Primary human non-small cell lung and pancreatic tumorgraft models ‒ utility and applications in drug discovery and tumor biology Curr. Protoc. Pharmacol. (2013)
|
[10] |
Cassidy, J.W., Caldas, C., Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts Cancer Res., 75 (2015),pp. 2963-2968
|
[11] |
Cibulskis, K., Lawrence, M.S., Carter, S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples Nat. Biotechnol., 31 (2013),pp. 213-219
|
[12] |
Conway, T., Wazny, J., Bromage, A. et al. Xenome – a tool for classifying reads from xenograft samples Bioinformatics, 28 (2012),pp. i172-i178
|
[13] |
Cook, J., Tyor, W. The pathogenesis of HIV-associated dementia: recent advances using a SCID mouse model of HIV-encephalitis Einstein J. Biol. Med., 22 (2006),pp. 32-40
|
[14] |
Cusinato, R., Pacenti, M., Martello, T. et al. Effectiveness of hydrogen peroxide and electron-beam irradiation treatment for removal and inactivation of viruses in equine-derived xenografts J. Virol. Methods, 232 (2016),pp. 39-46
|
[15] |
Cvetkovich, T.A., Lazar, E., Blumberg, B.M. et al. Human immunodeficiency virus type 1 infection of neural xenografts Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 5162-5166
|
[16] |
Davis, L.A. Genetically engineered crops Engineering, 2 (2016),pp. 268-269
|
[17] |
Day, C.P., Merlino, G., Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges Cell, 163 (2015),pp. 39-53
|
[18] |
DeRose, Y.S., Wang, G., Lin, Y.-C. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes Nat. Med., 17 (2011),pp. 1514-1520
|
[19] |
DeRose, Y.S., Wang, G., Lin, Y.C. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes Nat. Med., 17 (2011),pp. 1514-1520
|
[20] |
Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
|
[21] |
Fidler, I.J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis Cancer Metastasis Rev., 5 (1986),pp. 29-49
|
[22] |
Fishman, J.A., Scobie, L., Takeuchi, Y. Xenotransplantation – associated infectious risk: a WHO consultation Xenotransplantation, 19 (2012),pp. 72-81
|
[23] |
Gao, H., Korn, J.M., Ferretti, S. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response Nat. Med., 21 (2015),pp. 1318-1325
|
[24] |
Girotti, M.R., Gremel, G., Lee, R. et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma Cancer Discov., 6 (2016),pp. 286-299
|
[25] |
Han, H., Peng, J., Han, Y. et al. PLoS One, 8 (2013)
|
[26] |
Hidalgo, M., Amant, F., Biankin, A.V. et al. Patient-derived xenograft models: an emerging platform for translational cancer research Cancer Discov., 4 (2014),pp. 998-1013
|
[27] |
Hodgkinson, C.L., Morrow, C.J., Li, Y. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer Nat. Med., 20 (2014),pp. 897-903
|
[28] |
Hu, Y., Sun, L., Yuan, Z. et al. Sci. Rep., 7 (2017),p. 11311
|
[29] |
Julien, S., Merino-Trigo, A., Lacroix, L. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer Clin. Cancer Res., 18 (2012),pp. 5314-5328
|
[30] |
Khandelwal, G., Girotti, M.R., Smowton, C. et al. Next-generation sequencing analysis and algorithms for PDX and CDX models Mol. Cancer Res., 15 (2017),pp. 1012-1016
|
[31] |
Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
|
[32] |
Kim, D., Pertea, G., Trapnell, C. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions Genome Biol., 14 (2013),p. R36
|
[33] |
Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods, 9 (2012),pp. 357-359
|
[34] |
Ledford, H. US cancer institute to overhaul tumour cell lines Nature, 530 (2016),p. 391
|
[35] |
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data Bioinformatics, 27 (2011),pp. 2987-2993
|
[36] |
Li, H., Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
|
[37] |
Li, H., Ruan, J., Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores Genome Res., 18 (2008),pp. 1851-1858
|
[38] |
Li, H., Zhu, Y., Tang, X. et al. Integrated analysis of transcriptome in cancer patient-derived xenografts PLoS One, 10 (2015)
|
[39] |
Li, L., Wei, Y., To, C. et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact Nat. Commun., 5 (2014),p. 5469
|
[40] |
Li, R., Quan, S., Yan, X. et al. Molecular characterization of genetically-modified crops: challenges and strategies Biotechnol. Adv., 35 (2017),pp. 302-309
|
[41] |
Li, R., Yu, C., Li, Y. et al. SOAP2: an improved ultrafast tool for short read alignment Bioinformatics, 25 (2009),pp. 1966-1967
|
[42] |
Lin, M.-T., Tseng, L.-H., Kamiyama, H. et al. Quantifying the relative amount of mouse and human DNA in cancer xenografts using species-specific variation in gene length Biotechniques, 48 (2010),p. 211
|
[43] |
Ling, S., Hu, Z., Yang, Z. et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. E6496-E6505
|
[44] |
Martincorena, I., Raine, K.M., Gerstung, M. et al. Universal patterns of selection in cancer and somatic tissues Cell, 171 (2017),pp. 1029-1041
|
[45] |
McCarthy, D.J., Chen, Y., Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation Nucleic Acids Res., 40 (2012),pp. 4288-4297
|
[46] |
Moro, M., Bertolini, G., Tortoreto, M. et al. Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells J. Biomed. Biotechnol., 2012 (2012),p. 568567
|
[47] |
Morton, C.L., Houghton, P.J. Establishment of human tumor xenografts in immunodeficient mice Nat. Protoc., 2 (2007),pp. 247-250
|
[48] |
Ni, X., Zhuo, M., Su, Z. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 21083-21088
|
[49] |
Niemann, H., Petersen, B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation Transgenic Res., 25 (2016),pp. 361-374
|
[50] |
Niu, D., Wei, H.-J., Lin, L. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 Science, 357 (2017),pp. 1303-1307
|
[51] |
Nunes, M., Vrignaud, P., Vacher, S. et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data Cancer Res., 75 (2015),pp. 1560-1566
|
[52] |
Pauli, C., Hopkins, B.D., Prandi, D. et al. Cancer Discov., 7 (2017),pp. 462-477
|
[53] |
Pearson, A.T., Finkel, K.A., Warner, K.A. et al. Patient-derived xenograft (PDX) tumors increase growth rate with time Oncotarget, 7 (2016),pp. 7993-8005
|
[54] |
Rossello, F.J., Tothill, R.W., Britt, K. et al. Next-generation sequence analysis of cancer xenograft models PLoS One, 8 (2013)
|
[55] |
Salm, M., Schelhorn, S.-E., Lancashire, L. et al. pdxBlacklist: identifying artefactual variants in patient-derived xenograft samples bioRxiv (2017)
|
[56] |
Siolas, D., Hannon, G.J. Patient-derived tumor xenografts: transforming clinical samples into mouse models Cancer Res., 73 (2013),pp. 5315-5319
|
[57] |
Stewart, E., Federico, S.M., Chen, X. et al. Orthotopic patient-derived xenografts of paediatric solid tumours Nature, 549 (2017),pp. 96-100
|
[58] |
Teicher, B.A.
|
[59] |
Tentler, J.J., Tan, A.C., Weekes, C.D. et al. Patient-derived tumour xenografts as models for oncology drug development Nat. Rev. Clin. Oncol., 9 (2012),pp. 338-350
|
[60] |
Tso, K.-Y., Lee, S.D., Lo, K.-W. et al. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts? BMC Genomics, 15 (2014),p. 1172
|
[61] |
Venditti, J.M., Wesley, R.A., Plowman, J. Adv. Pharmacol. Chemother., 20 (1984),pp. 1-20
|
[62] |
Wang, D.C., Wang, W., Zhu, B. et al. Lung cancer heterogeneity and new strategies for drug therapy Annu. Rev. Pharmacol. Toxicol., 58 (2017),pp. 531-546
|
[63] |
Wang, K., Singh, D., Zeng, Z. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery Nucleic Acids Res., 38 (2010),p. e178
|
[64] |
Wei, Q., Ye, Z., Zhong, X. et al. Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis Ann. Oncol., 28 (2017),pp. 2135-2141
|