[1] |
Barraud, N., Buson, A., Jarolimek, W. et al. PLoS One, 8 (2013)
|
[2] |
Barry, C.E., Mdluli, K. Drug sensitivity and environmental adaptation of mycobacterial cell wall components Trends Microbiol., 4 (1996),pp. 275-281
|
[3] |
Brennan, M.J. Infect. Immun., 85 (2017)
|
[4] |
Brennan, P.J., Nikaido, H. The envelope of mycobacteria Annu. Rev. Biochem., 64 (1995),pp. 29-63
|
[5] |
Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J. et al. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species PLoS One, 11 (2016)
|
[6] |
Byer, T., Wang, J., Zhang, M.G. et al. Microbiology, 163 (2017),pp. 1902-1911
|
[7] |
Chen, J.M., German, G.J., Alexander, D.C. et al. J. Bacteriol., 188 (2006),pp. 633-641
|
[8] |
Costerton, J.W., Lewandowski, Z., Caldwell, D.E. et al. Microbial biofilms Annu. Rev. Microbiol., 49 (1995),pp. 711-745
|
[9] |
Denman, C.C., Brown, A.R. Microbiology, 159 (2013),pp. 771-781
|
[10] |
Donlan, R.M., Costerton, J.W. Biofilms: survival mechanisms of clinically relevant microorganisms Clin. Microbiol. Rev., 15 (2002),pp. 167-193
|
[11] |
Eagen, W.J., Baumoel, L.R., Osman, S. et al. FEMS Microbiol. Lett., 365 (2018)
|
[12] |
Flemming, H.C., Neu, T.R., Wozniak, D.J. The EPS matrix: the "house of biofilm cells" J. Bacteriol., 189 (2007),pp. 7945-7947
|
[13] |
Goldstein, I.J., Hamilton, J.K., Huffman, G.W. et al. Reduction of the products of periodate oxidation of carbohydrates. XII. Methylation studies on cellulose polyalcohol J. Org. Chem., 27 (1962),pp. 3962-3964
|
[14] |
Groisillier, A., Labourel, A., Michel, G. et al. Appl. Environ. Microbiol., 81 (2015),pp. 1799-1812
|
[15] |
Gupta, K.R., Baloni, P., Indi, S.S. et al. J. Bacteriol., 198 (2016),pp. 1414-1422
|
[16] |
Hobley, L., Harkins, C., MacPhee, C.E. et al. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes FEMS Microbiol. Rev., 39 (2015),pp. 649-669
|
[17] |
Hong, X., Hopfinger, A.J. Biomacromolecules, 5 (2004),pp. 1052-1065
|
[18] |
Hu, J., Zhao, L., Yang, M. A GntR family transcription factor positively regulates mycobacterial isoniazid resistance by controlling the expression of a putative permease BMC Microbiol., 15 (2015),p. 214
|
[19] |
Jennings, D.B., Ehrenshaft, M., Pharr, D.M. et al. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 15129-15133
|
[20] |
Krahulec, S., Armao, G.C., Bubner, P. et al. Chem. Biol. Interact., 178 (2009),pp. 274-282
|
[21] |
Kumar, Y.L., Nadh, R.V., Radhakrishnamurti, P.S. Substrate inhibition: oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium Russ. J. Phys. Chem., 88 (2014),pp. 774-778
|
[22] |
Li, W., He, Z.G. Nucleic Acids Res., 40 (2012),pp. 11292-11307
|
[23] |
Li, W., Li, M., Hu, L. et al. HpoR, a novel c-di-GMP effective transcription factor, links the second messenger's regulatory function to the mycobacterial antioxidant defense Nucleic Acids Res., 46 (2018),pp. 3595-3611
|
[24] |
Lin Chua, S., Liu, Y., Li, Y. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 451
|
[25] |
Meena, M., Prasad, V., Zehra, A. et al. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions Front. Microbiol., 6 (2015),p. 1019
|
[26] |
Miller, M.B., Bassler, B.L. Quorum sensing in bacteria Annu. Rev. Microbiol., 55 (2001),pp. 165-199
|
[27] |
Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods, 5 (2008),pp. 621-628
|
[28] |
Murugan, K., Selvanayaki, K., Al-Sohaibani, S. Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters Saudi J. Biol. Sci., 23 (2016),pp. 150-159
|
[29] |
Nakano, M.M., Yang, F., Hardin, P. et al. J. Bacteriol., 177 (1995),pp. 573-579
|
[30] |
Nguyen, K.T., Piastro, K., Gray, T.A. et al. J. Bacteriol., 192 (2010),pp. 5134-5142
|
[31] |
Ojha, A., Anand, M., Bhatt, A. et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria Cell, 123 (2005),pp. 861-873
|
[32] |
Ojha, A.K., Baughn, A.D., Sambandan, D. et al. Mol. Microbiol., 69 (2008),pp. 164-174
|
[33] |
Pacheco, S.A., Hsu, F.F., Powers, K.M. et al. J. Biol. Chem., 288 (2013),pp. 24213-24222
|
[34] |
Peterson, B.W., He, Y., Ren, Y. et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges FEMS Microbiol. Rev., 39 (2015),pp. 234-245
|
[35] |
Price, K.E., Orazi, G., Ruoff, K.L. et al. PLoS One, 10 (2015)
|
[36] |
Primm, T.P., Lucero, C.A., Health impacts of environmental mycobacteria Clin. Microbiol. Rev., 17 (2004),pp. 98-106
|
[37] |
Recht, J., Martínez, A., Torello, S. et al. J. Bacteriol., 182 (2000),pp. 4348-4351
|
[38] |
Rinaldo, S., Giardina, G., Mantoni, F. et al. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms FEMS Microbiol. Lett., 365 (2018)
|
[39] |
Robinson, J.C., Rostami, N., Casement, J. et al. Mol. Oral. Microbiol., 33 (2017),pp. 143-154
|
[40] |
Roriz, C.L., Barros, L., Carvalho, A.M. et al. HPLC-profiles of tocopherols, sugars, and organic acids in three medicinal plants consumed as infusions Int. J. Food Sci., 2014 (2014),p. 241481
|
[41] |
Slatner, M., Nidetzky, B., Kulbe, K.D. Biochemistry, 38 (1999),pp. 10489-10498
|
[42] |
Snapper, S.B., Melton, R.E., Mustafa, S. et al. Mol. Microbiol., 4 (1990),pp. 1911-1919
|
[43] |
Trivedi, A., Mavi, P.S., Bhatt, D. et al. Nat. Commun., 7 (2016),p. 11392
|
[44] |
Vaccari, L., Molaei, M., Niepa, T.H.R. et al. Films of bacteria at interfaces Adv. Colloid Interface Sci., 247 (2017),pp. 561-572
|
[45] |
Valentini, M., Filloux, A. J. Biol. Chem., 291 (2016),pp. 12547-12555
|
[46] |
van Wyk, N., Navarro, D., Blaise, M. et al. Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production Glycobiology, 27 (2017),pp. 392-399
|
[47] |
Vargas, D., Hageman, S., Gulati, M. et al. IUBMB Life, 68 (2016),pp. 621-628
|
[48] |
Wang, F., Sambandan, D., Halder, R. et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E2510-E2517
|
[49] |
World Health Organization (WHO)
|
[50] |
Wright, C.C., Hsu, F.F., Arnett, E. et al. Infect. Immun., 85 (2017)
|
[51] |
Yang, M., Gao, C., Cui, T. et al. Nucleic Acids Res., 40 (2012),pp. 1009-1020
|
[52] |
Yang, M., Gao, C.H., Hu, J. et al. Sci. Rep., 5 (2015),p. 13969
|
[53] |
Yang, Y., Thomas, J., Li, Y. et al. Defining a temporal order of genetic requirements for development of mycobacterial biofilms Mol. Microbiol., 105 (2017),pp. 794-809
|
[54] |
Ye, Y., Yang, Q., Fang, F. et al. BMC Vet. Res., 11 (2015),p. 214
|
[55] |
Ymele-Leki, P., Houot, L., Watnick, P.I. Appl. Environ. Microbiol., 79 (2013),pp. 4675-4683
|
[56] |
Zahid, N., Deppenmeier, U. Appl. Microbiol. Biotechnol., 100 (2016),pp. 9967-9978
|
[57] |
Zhao, R., Song, Y., Dai, Q. et al. Sci. Rep., 7 (2017),p. 639
|