[1] |
Ashburner, M., Ball, C.A., Blake, J.A. et al. Gene ontology: tool for the unification of biology. The gene ontology consortium Nat. Genet., 25 (2000),pp. 25-29
|
[2] |
Baldauf, J.A., Marcon, C., Paschold, A. et al. Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive, and allelic expression patterns in maize hybrids Plant Physiol., 171 (2016),pp. 1144-1155
|
[3] |
Barrero, C., Royo, J., Grijota-Martinez, C. et al. Planta, 229 (2009),pp. 235-247
|
[4] |
Bolduc, N., Yilmaz, A., Mejia-Guerra, M.K. et al. Unraveling the KNOTTED1 regulatory network in maize meristems Genes Dev., 26 (2012),pp. 1685-1690
|
[5] |
Dai, X., Zhao, P.X. psRNATarget: a plant small RNA target analysis server Nucleic Acids Res., 39 (2011),pp. W155-W159
|
[6] |
Du, Z., Zhou, X., Ling, Y. et al. agriGO: a GO analysis toolkit for the agricultural community Nucleic Acids Res., 38 (2010),pp. W64-W70
|
[7] |
Farris, S.P., Harris, R.A., Ponomarev, I. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse Front. Neurosci., 9 (2015),p. 176
|
[8] |
Finn, R.D., Bateman, A., Clements, J. et al. Pfam: the protein families database Nucleic Acids Res., 42 (2014),pp. D222-D230
|
[9] |
Fu, J., Cheng, Y., Linghu, J. et al. RNA sequencing reveals the complex regulatory network in the maize kernel Nat. Commun., 4 (2013),p. 2832
|
[10] |
Gao, T., Liu, Z., Wang, Y. et al. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation Nucleic Acids Res., 41 (2013),pp. D445-D451
|
[11] |
Ghosh, S., Chan, C.K. Analysis of RNA-seq data using TopHat and Cufflinks Methods Mol. Biol., 1374 (2016),pp. 339-361
|
[12] |
Gomez, E., Royo, J., Guo, Y. et al. Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1 Plant Cell, 14 (2002),pp. 599-610
|
[13] |
Huang, J., Vendramin, S., Shi, L. et al. Construction and optimization of a large gene coexpression network in maize using RNA-Seq data Plant Physiol., 175 (2017),pp. 568-583
|
[14] |
Jin, J., Zhang, H., Kong, L. et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors Nucleic Acids Res., 42 (2014),pp. D1182-D1187
|
[15] |
Kanehisa, M., Goto, S., Kawashima, S. et al. The KEGG databases at GenomeNet Nucleic Acids Res., 30 (2002),pp. 42-46
|
[16] |
Komili, S., Silver, P.A. Coupling and coordination in gene expression processes: a systems biology view Nat. Rev. Genet., 9 (2008),pp. 38-48
|
[17] |
Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods, 9 (2012),pp. 357-359
|
[18] |
Leopold, A.C., Niedergang-Kamien, E., Janick, J. Experimental modification of plant senescence Plant Physiol., 34 (1959),pp. 570-573
|
[19] |
Li, P., Ponnala, L., Gandotra, N. et al. The developmental dynamics of the maize leaf transcriptome Nat. Genet., 42 (2010),pp. 1060-1067
|
[20] |
Liu, Y., Tian, T., Zhang, K. et al. PCSD: a plant chromatin state database Nucleic Acids Res., 46 (2017),pp. D1157-D1167
|
[21] |
Lunardon, A., Forestan, C., Farinati, S. et al. Plant Physiol., 170 (2016),pp. 1535-1548
|
[22] |
Niklas, N., Hafenscher, J., Barna, A. et al. cFinder: definition and quantification of multiple haplotypes in a mixed sample BMC Res. Notes, 8 (2015),p. 422
|
[23] |
Obayashi, T., Aoki, Y., Tadaka, S. et al. ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index Plant Cell Physiol., 59 (2018),p. e3
|
[24] |
Opitz, N., Marcon, C., Paschold, A. et al. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit J. Exp. Bot., 67 (2016),pp. 1095-1107
|
[25] |
Opitz, N., Paschold, A., Marcon, C. et al. Transcriptomic complexity in young maize primary roots in response to low water potentials BMC Genomics, 15 (2014),p. 741
|
[26] |
Proost, S., Mutwil, M. PlaNet: comparative co-expression network analyses for plants Methods Mol. Biol., 1533 (2017),pp. 213-227
|
[27] |
Rajandeep, S., Sekhon, R.B., Hirsch, Candice N. et al. Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays PLoS One, 8 (2013)
|
[28] |
Rhee, S.Y., Mutwil, M. Towards revealing the functions of all genes in plants Trends Plant Sci., 19 (2014),pp. 212-221
|
[29] |
Ritchie, M.D., Holzinger, E.R., Li, R. et al. Methods of integrating data to uncover genotype-phenotype interactions Nat. Rev. Genet., 16 (2015),pp. 85-97
|
[30] |
Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
|
[31] |
Sekhon, R.S., Lin, H., Childs, K.L. et al. Genome-wide atlas of transcription during maize development Plant J., 66 (2011),pp. 553-563
|
[32] |
Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development Plant Genome, 9 (2016)
|
[33] |
Tian, T., Liu, Y., Yan, H. et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update Nucleic Acids Res., 45 (2017),pp. W122-W129
|
[34] |
Tian, T., You, Q., Zhang, L. et al. SorghumFDB: sorghum functional genomics database with multidimensional network analysis Database, 2016 (2016)
|
[35] |
Tzin, V., Fernandez-Pozo, N., Richter, A. et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays Plant Physiol., 169 (2015),pp. 1727-1743
|
[36] |
Vollbrecht, E., Veit, B., Sinha, N. et al. Nature, 350 (1991),pp. 241-243
|
[37] |
Wang, L., Czedik-Eysenberg, A., Mertz, R.A. et al. Nat. Biotechnol., 32 (2014),pp. 1158-1165
|
[38] |
Wang, X., Chen, Q., Wu, Y. et al. Genome-wide analysis of transcriptional variability in a large maize-teosinte population Mol. Plant, 11 (2017),pp. 443-459
|
[39] |
Wang, Y.X., Huang, H. Review on statistical methods for gene network reconstruction using expression data J. Theor. Biol., 362 (2014),pp. 53-61
|
[40] |
Yi, X., Du, Z., Su, Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community Nucleic Acids Res., 41 (2013),pp. W98-W103
|
[41] |
You, Q., Xu, W., Zhang, K. et al. Nucleic Acids Res., 45 (2017),pp. 5625-5626
|
[42] |
You, Q., Zhang, L., Yi, X. et al. Sci. Rep., 6 (2016),p. 38436
|
[43] |
You, Q., Zhang, L., Yi, X. et al. Mol. Plant, 8 (2015),pp. 967-970
|
[44] |
Yu, P., Wang, C., Baldauf, J.A. et al. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots New Phytol., 217 (2017),pp. 1240-1253
|
[45] |
Zhan, J., Thakare, D., Ma, C. et al. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation Plant Cell, 27 (2015),pp. 513-531
|
[46] |
Zhu, G., Wu, A., Xu, X.J. et al. PPIM: a protein-protein interaction database for maize Plant Physiol., 170 (2016),pp. 618-626
|