5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 7
Jul.  2018
Turn off MathJax
Article Contents

MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels

doi: 10.1016/j.jgg.2018.05.007
More Information
  • Corresponding author: E-mail address: x_wenying@yahoo.com (Wenying Xu); E-mail address: zhensu@cau.edu.cn (Zhen Su)
  • Received Date: 2018-01-08
  • Accepted Date: 2018-05-25
  • Rev Recd Date: 2018-04-30
  • Available Online: 2018-07-18
  • Publish Date: 2018-07-20
  • Maize (Zea mays) is the most widely grown grain crop in the world, playing important roles in agriculture and industry. However, the functions of maize genes remain largely unknown. High-quality genome-wide transcriptome datasets provide important biological knowledge which has been widely and successfully used in plants not only by measuring gene expression levels but also by enabling co-expression analysis for predicting gene functions and modules related to agronomic traits. Recently, thousands of maize transcriptomic data are available across different inbred lines, development stages, tissues, and treatments, or even across different tissue sections and cell lines. Here, we integrated 701 transcriptomic and 108 epigenomic data and studied the different conditional networks with multi-dimensional omics levels. We constructed a searchable, integrative, one-stop online platform, the maize conditional co-expression network (MCENet) platform. MCENet provides 10 global/conditional co-expression networks, 5 network accessional analysis toolkits (i.e., Network Search, Network Remodel, Module Finder, Network Comparison, and Dynamic Expression View) and multiple network functional support toolkits (e.g., motif and module enrichment analysis). We hope that our database might help plant research communities to identify maize functional genes or modules that regulate important agronomic traits. MCENet is publicly accessible at http://bioinformatics.cau.edu.cn/MCENet/.
  • loading
  • [1]
    Ashburner, M., Ball, C.A., Blake, J.A. et al. Gene ontology: tool for the unification of biology. The gene ontology consortium Nat. Genet., 25 (2000),pp. 25-29
    [2]
    Baldauf, J.A., Marcon, C., Paschold, A. et al. Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive, and allelic expression patterns in maize hybrids Plant Physiol., 171 (2016),pp. 1144-1155
    [3]
    Barrero, C., Royo, J., Grijota-Martinez, C. et al. Planta, 229 (2009),pp. 235-247
    [4]
    Bolduc, N., Yilmaz, A., Mejia-Guerra, M.K. et al. Unraveling the KNOTTED1 regulatory network in maize meristems Genes Dev., 26 (2012),pp. 1685-1690
    [5]
    Dai, X., Zhao, P.X. psRNATarget: a plant small RNA target analysis server Nucleic Acids Res., 39 (2011),pp. W155-W159
    [6]
    Du, Z., Zhou, X., Ling, Y. et al. agriGO: a GO analysis toolkit for the agricultural community Nucleic Acids Res., 38 (2010),pp. W64-W70
    [7]
    Farris, S.P., Harris, R.A., Ponomarev, I. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse Front. Neurosci., 9 (2015),p. 176
    [8]
    Finn, R.D., Bateman, A., Clements, J. et al. Pfam: the protein families database Nucleic Acids Res., 42 (2014),pp. D222-D230
    [9]
    Fu, J., Cheng, Y., Linghu, J. et al. RNA sequencing reveals the complex regulatory network in the maize kernel Nat. Commun., 4 (2013),p. 2832
    [10]
    Gao, T., Liu, Z., Wang, Y. et al. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation Nucleic Acids Res., 41 (2013),pp. D445-D451
    [11]
    Ghosh, S., Chan, C.K. Analysis of RNA-seq data using TopHat and Cufflinks Methods Mol. Biol., 1374 (2016),pp. 339-361
    [12]
    Gomez, E., Royo, J., Guo, Y. et al. Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1 Plant Cell, 14 (2002),pp. 599-610
    [13]
    Huang, J., Vendramin, S., Shi, L. et al. Construction and optimization of a large gene coexpression network in maize using RNA-Seq data Plant Physiol., 175 (2017),pp. 568-583
    [14]
    Jin, J., Zhang, H., Kong, L. et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors Nucleic Acids Res., 42 (2014),pp. D1182-D1187
    [15]
    Kanehisa, M., Goto, S., Kawashima, S. et al. The KEGG databases at GenomeNet Nucleic Acids Res., 30 (2002),pp. 42-46
    [16]
    Komili, S., Silver, P.A. Coupling and coordination in gene expression processes: a systems biology view Nat. Rev. Genet., 9 (2008),pp. 38-48
    [17]
    Langmead, B., Salzberg, S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods, 9 (2012),pp. 357-359
    [18]
    Leopold, A.C., Niedergang-Kamien, E., Janick, J. Experimental modification of plant senescence Plant Physiol., 34 (1959),pp. 570-573
    [19]
    Li, P., Ponnala, L., Gandotra, N. et al. The developmental dynamics of the maize leaf transcriptome Nat. Genet., 42 (2010),pp. 1060-1067
    [20]
    Liu, Y., Tian, T., Zhang, K. et al. PCSD: a plant chromatin state database Nucleic Acids Res., 46 (2017),pp. D1157-D1167
    [21]
    Lunardon, A., Forestan, C., Farinati, S. et al. Plant Physiol., 170 (2016),pp. 1535-1548
    [22]
    Niklas, N., Hafenscher, J., Barna, A. et al. cFinder: definition and quantification of multiple haplotypes in a mixed sample BMC Res. Notes, 8 (2015),p. 422
    [23]
    Obayashi, T., Aoki, Y., Tadaka, S. et al. ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index Plant Cell Physiol., 59 (2018),p. e3
    [24]
    Opitz, N., Marcon, C., Paschold, A. et al. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit J. Exp. Bot., 67 (2016),pp. 1095-1107
    [25]
    Opitz, N., Paschold, A., Marcon, C. et al. Transcriptomic complexity in young maize primary roots in response to low water potentials BMC Genomics, 15 (2014),p. 741
    [26]
    Proost, S., Mutwil, M. PlaNet: comparative co-expression network analyses for plants Methods Mol. Biol., 1533 (2017),pp. 213-227
    [27]
    Rajandeep, S., Sekhon, R.B., Hirsch, Candice N. et al. Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays PLoS One, 8 (2013)
    [28]
    Rhee, S.Y., Mutwil, M. Towards revealing the functions of all genes in plants Trends Plant Sci., 19 (2014),pp. 212-221
    [29]
    Ritchie, M.D., Holzinger, E.R., Li, R. et al. Methods of integrating data to uncover genotype-phenotype interactions Nat. Rev. Genet., 16 (2015),pp. 85-97
    [30]
    Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [31]
    Sekhon, R.S., Lin, H., Childs, K.L. et al. Genome-wide atlas of transcription during maize development Plant J., 66 (2011),pp. 553-563
    [32]
    Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development Plant Genome, 9 (2016)
    [33]
    Tian, T., Liu, Y., Yan, H. et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update Nucleic Acids Res., 45 (2017),pp. W122-W129
    [34]
    Tian, T., You, Q., Zhang, L. et al. SorghumFDB: sorghum functional genomics database with multidimensional network analysis Database, 2016 (2016)
    [35]
    Tzin, V., Fernandez-Pozo, N., Richter, A. et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays Plant Physiol., 169 (2015),pp. 1727-1743
    [36]
    Vollbrecht, E., Veit, B., Sinha, N. et al. Nature, 350 (1991),pp. 241-243
    [37]
    Wang, L., Czedik-Eysenberg, A., Mertz, R.A. et al. Nat. Biotechnol., 32 (2014),pp. 1158-1165
    [38]
    Wang, X., Chen, Q., Wu, Y. et al. Genome-wide analysis of transcriptional variability in a large maize-teosinte population Mol. Plant, 11 (2017),pp. 443-459
    [39]
    Wang, Y.X., Huang, H. Review on statistical methods for gene network reconstruction using expression data J. Theor. Biol., 362 (2014),pp. 53-61
    [40]
    Yi, X., Du, Z., Su, Z. PlantGSEA: a gene set enrichment analysis toolkit for plant community Nucleic Acids Res., 41 (2013),pp. W98-W103
    [41]
    You, Q., Xu, W., Zhang, K. et al. Nucleic Acids Res., 45 (2017),pp. 5625-5626
    [42]
    You, Q., Zhang, L., Yi, X. et al. Sci. Rep., 6 (2016),p. 38436
    [43]
    You, Q., Zhang, L., Yi, X. et al. Mol. Plant, 8 (2015),pp. 967-970
    [44]
    Yu, P., Wang, C., Baldauf, J.A. et al. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots New Phytol., 217 (2017),pp. 1240-1253
    [45]
    Zhan, J., Thakare, D., Ma, C. et al. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation Plant Cell, 27 (2015),pp. 513-531
    [46]
    Zhu, G., Wu, A., Xu, X.J. et al. PPIM: a protein-protein interaction database for maize Plant Physiol., 170 (2016),pp. 618-626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return