5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 7
Jul.  2018
Turn off MathJax
Article Contents

Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome

doi: 10.1016/j.jgg.2018.05.005
More Information
  • Corresponding author: E-mail address: gaog@mail.cbi.pku.edu.cn (Ge Gao)
  • Received Date: 2017-12-31
  • Accepted Date: 2018-05-25
  • Rev Recd Date: 2018-05-03
  • Available Online: 2018-07-07
  • Publish Date: 2018-07-20
  • Understanding the functional effects of genetic variants is crucial in modern genomics and genetics. Transcription factor binding sites (TFBSs) are one of the most important cis-regulatory elements. While multiple tools have been developed to assess functional effects of genetic variants at TFBSs, they usually assume that each variant works in isolation and neglect the potential “interference” among multiple variants within the same TFBS. In this study, we presented COPE-TFBS (Context-Oriented Predictor for variant Effect on Transcription Factor Binding Site), a novel method that considers sequence context to accurately predict variant effects on TFBSs. We systematically re-analyzed the sequencing data from both the 1000 Genomes Project and the Genotype-Tissue Expression (GTEx) Project via COPE-TFBS, and identified numbers of novel TFBSs, transformed TFBSs and discordantly annotated TFBSs resulting from multiple variants, further highlighting the necessity of sequence context in accurately annotating genetic variants. COPE-TFBS is freely available for academic use at http://cope.cbi.pku.edu.cn/.
  • loading
  • [1]
    Alipanahi, B., Delong, A., Weirauch, M.T. et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning Nat. Biotechnol., 33 (2015),pp. 831-838
    [2]
    Bansal, V., Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem Bioinformatics, 24 (2008),pp. I153-I159
    [3]
    Boyle, A.P., Hong, E.L., Hariharan, M. et al. Annotation of functional variation in personal genomes using RegulomeDB Genome Res., 22 (2012),pp. 1790-1797
    [4]
    Cheng, S.J., Shi, F.Y., Liu, H. et al. Accurately annotate compound effects of genetic variants using a context-sensitive framework Nucleic Acids Res., 45 (2017),p. e82
    [5]
    Cibulskis, K., Lawrence, M.S., Carter, S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples Nat. Biotechnol., 31 (2013),pp. 213-219
    [6]
    Coetzee, S.G., Coetzee, G.A., Hazelett, D.J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites Bioinformatics, 31 (2015),pp. 3847-3849
    [7]
    Cooper, D.N., Stenson, P.D., Chuzhanova, N.A. The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms Curr. Protoc. Bioinformatics (2006)
    [8]
    Delaneau, O., Marchini, J., Zagury, J.F. A linear complexity phasing method for thousands of genomes Nat. Methods, 9 (2012),pp. 179-181
    [9]
    Edge, P., Bafna, V., Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies Genome Res., 27 (2016),pp. 801-812
    [10]
    Fu, Y., Liu, Z., Lou, S. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer Genome Biol., 15 (2014),p. 480
    [11]
    Huang, Q., Whitington, T., Gao, P. et al. Nat. Genet., 46 (2014),pp. 126-135
    [12]
    Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
    [13]
    Kumar, S., Ambrosini, G., Bucher, P. SNP2TFBS ‒ a database of regulatory SNPs affecting predicted transcription factor binding site affinity Nucleic Acids Res., 45 (2017),pp. D139-D144
    [14]
    Lappalainen, T., Sammeth, M., Friedlander, M.R. et al. Transcriptome and genome sequencing uncovers functional variation in humans Nature, 501 (2013),pp. 506-511
    [15]
    Latchman, D.S. Transcription factors: an overview Int. J. Biochem. Cell Biol., 29 (1997),pp. 1305-1312
    [16]
    Liu, N.Q., Ter Huurne, M., Nguyen, L.N. et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression Nat. Commun., 8 (2017),p. 14418
    [17]
    Machulla, H.K., Steinborn, F., Schaaf, A. et al. Brain glioma and human leukocyte antigens (HLA) ‒ is there an association J. Neurooncol., 52 (2001),pp. 253-261
    [18]
    Mathelier, A., Fornes, O., Arenillas, D.J. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles Nucleic Acids Res., 44 (2016),pp. D110-D115
    [19]
    Maurano, M.T., Haugen, E., Sandstrom, R. et al. Nat. Genet., 47 (2015),pp. 1393-1401
    [20]
    McLaren, W., Gil, L., Hunt, S.E. et al. The ensembl variant effect predictor Genome Biol., 17 (2016),p. 122
    [21]
    Pertea, M., Pertea, G.M., Antonescu, C.M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nat. Biotechnol., 33 (2015),pp. 290-295
    [22]
    Sherry, S.T., Ward, M.H., Kholodov, M. et al. dbSNP: the NCBI database of genetic variation Nucleic Acids Res., 29 (2001),pp. 308-311
    [23]
    Touzet, H., Varre, J.S. Algorithms Mol. Biol., 2 (2007),p. 15
    [24]
    The 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M. et al. A global reference for human genetic variation Nature, 526 (2015),pp. 68-74
    [25]
    The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [26]
    The GTEx Consortium The genotype-tissue expression (GTEx) project Nat. Genet., 45 (2013),pp. 580-585
    [27]
    Vergara, I.A., Frech, C., Chen, N. CooVar: co-occurring variant analyzer BMC Res. Notes, 5 (2012),p. 615
    [28]
    Ward, L.D., Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease Nucleic Acids Res., 44 (2016),pp. D877-D881
    [29]
    Wei, L., Liu, L.T., Conroy, J.R. et al. MAC: identifying and correcting annotation for multi-nucleotide variations BMC Genomics, 16 (2015),p. 569
    [30]
    Wingender, E., Dietze, P., Karas, H. et al. TRANSFAC: a database on transcription factors and their DNA binding sites Nucleic Acids Res., 24 (1996),pp. 238-241
    [31]
    Zhang, H.M., Chen, H., Liu, W. et al. AnimalTFDB: a comprehensive animal transcription factor database Nucleic Acids Res., 40 (2012),pp. D144-D149
    [32]
    Zhou, X., Lowdon, R.F., Li, D. et al. Exploring long-range genome interactions using the WashU Epigenome Browser Nat. Methods, 10 (2013),pp. 375-376
    [33]
    Zuo, C., Shin, S., Keles, S. atSNP: transcription factor binding affinity testing for regulatory SNP detection Bioinformatics, 31 (2015),pp. 3353-3355
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return