[1] |
Alipanahi, B., Delong, A., Weirauch, M.T. et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning Nat. Biotechnol., 33 (2015),pp. 831-838
|
[2] |
Bansal, V., Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem Bioinformatics, 24 (2008),pp. I153-I159
|
[3] |
Boyle, A.P., Hong, E.L., Hariharan, M. et al. Annotation of functional variation in personal genomes using RegulomeDB Genome Res., 22 (2012),pp. 1790-1797
|
[4] |
Cheng, S.J., Shi, F.Y., Liu, H. et al. Accurately annotate compound effects of genetic variants using a context-sensitive framework Nucleic Acids Res., 45 (2017),p. e82
|
[5] |
Cibulskis, K., Lawrence, M.S., Carter, S.L. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples Nat. Biotechnol., 31 (2013),pp. 213-219
|
[6] |
Coetzee, S.G., Coetzee, G.A., Hazelett, D.J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites Bioinformatics, 31 (2015),pp. 3847-3849
|
[7] |
Cooper, D.N., Stenson, P.D., Chuzhanova, N.A. The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms Curr. Protoc. Bioinformatics (2006)
|
[8] |
Delaneau, O., Marchini, J., Zagury, J.F. A linear complexity phasing method for thousands of genomes Nat. Methods, 9 (2012),pp. 179-181
|
[9] |
Edge, P., Bafna, V., Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies Genome Res., 27 (2016),pp. 801-812
|
[10] |
Fu, Y., Liu, Z., Lou, S. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer Genome Biol., 15 (2014),p. 480
|
[11] |
Huang, Q., Whitington, T., Gao, P. et al. Nat. Genet., 46 (2014),pp. 126-135
|
[12] |
Kim, D., Langmead, B., Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements Nat. Methods, 12 (2015),pp. 357-360
|
[13] |
Kumar, S., Ambrosini, G., Bucher, P. SNP2TFBS ‒ a database of regulatory SNPs affecting predicted transcription factor binding site affinity Nucleic Acids Res., 45 (2017),pp. D139-D144
|
[14] |
Lappalainen, T., Sammeth, M., Friedlander, M.R. et al. Transcriptome and genome sequencing uncovers functional variation in humans Nature, 501 (2013),pp. 506-511
|
[15] |
Latchman, D.S. Transcription factors: an overview Int. J. Biochem. Cell Biol., 29 (1997),pp. 1305-1312
|
[16] |
Liu, N.Q., Ter Huurne, M., Nguyen, L.N. et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression Nat. Commun., 8 (2017),p. 14418
|
[17] |
Machulla, H.K., Steinborn, F., Schaaf, A. et al. Brain glioma and human leukocyte antigens (HLA) ‒ is there an association J. Neurooncol., 52 (2001),pp. 253-261
|
[18] |
Mathelier, A., Fornes, O., Arenillas, D.J. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles Nucleic Acids Res., 44 (2016),pp. D110-D115
|
[19] |
Maurano, M.T., Haugen, E., Sandstrom, R. et al. Nat. Genet., 47 (2015),pp. 1393-1401
|
[20] |
McLaren, W., Gil, L., Hunt, S.E. et al. The ensembl variant effect predictor Genome Biol., 17 (2016),p. 122
|
[21] |
Pertea, M., Pertea, G.M., Antonescu, C.M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nat. Biotechnol., 33 (2015),pp. 290-295
|
[22] |
Sherry, S.T., Ward, M.H., Kholodov, M. et al. dbSNP: the NCBI database of genetic variation Nucleic Acids Res., 29 (2001),pp. 308-311
|
[23] |
Touzet, H., Varre, J.S. Algorithms Mol. Biol., 2 (2007),p. 15
|
[24] |
The 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M. et al. A global reference for human genetic variation Nature, 526 (2015),pp. 68-74
|
[25] |
The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
|
[26] |
The GTEx Consortium The genotype-tissue expression (GTEx) project Nat. Genet., 45 (2013),pp. 580-585
|
[27] |
Vergara, I.A., Frech, C., Chen, N. CooVar: co-occurring variant analyzer BMC Res. Notes, 5 (2012),p. 615
|
[28] |
Ward, L.D., Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease Nucleic Acids Res., 44 (2016),pp. D877-D881
|
[29] |
Wei, L., Liu, L.T., Conroy, J.R. et al. MAC: identifying and correcting annotation for multi-nucleotide variations BMC Genomics, 16 (2015),p. 569
|
[30] |
Wingender, E., Dietze, P., Karas, H. et al. TRANSFAC: a database on transcription factors and their DNA binding sites Nucleic Acids Res., 24 (1996),pp. 238-241
|
[31] |
Zhang, H.M., Chen, H., Liu, W. et al. AnimalTFDB: a comprehensive animal transcription factor database Nucleic Acids Res., 40 (2012),pp. D144-D149
|
[32] |
Zhou, X., Lowdon, R.F., Li, D. et al. Exploring long-range genome interactions using the WashU Epigenome Browser Nat. Methods, 10 (2013),pp. 375-376
|
[33] |
Zuo, C., Shin, S., Keles, S. atSNP: transcription factor binding affinity testing for regulatory SNP detection Bioinformatics, 31 (2015),pp. 3353-3355
|