[1] |
Albert, S., Will, E., Gallwitz, D. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases EMBO J., 18 (1999),pp. 5216-5225
|
[2] |
Alexandrov, K., Horiuchi, H., Steele-Mortimer, O. et al. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes EMBO J., 13 (1994),pp. 5262-5273
|
[3] |
Alory, C., Balch, W.E. Organization of the Rab-GDI/CHM superfamily: the functional basis for choroideremia disease Traffic, 2 (2001),pp. 532-543
|
[4] |
Asha, H., Nagy, I., Kovacs, G. et al. Genetics, 163 (2003),pp. 203-215
|
[5] |
Bachinger, H.P., Doege, K.J., Petschek, J.P. et al. J. Biol. Chem., 257 (1982),pp. 14590-14592
|
[6] |
Bannykh, S.I., Rowe, T., Balch, W.E. The organization of endoplasmic reticulum export complexes J. Cell Biol., 135 (1996),pp. 19-35
|
[7] |
Bard, F., Casano, L., Mallabiabarrena, A. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization Nature, 439 (2006),pp. 604-607
|
[8] |
Bonifacino, J.S., Glick, B.S. The mechanisms of vesicle budding and fusion Cell, 116 (2004),pp. 153-166
|
[9] |
Boyadjiev, S.A., Fromme, J.C., Ben, J. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking Nat. Genet., 38 (2006),pp. 1192-1197
|
[10] |
Brand, A.H., Perrimon, N. Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
|
[11] |
Brandizzi, F., Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control Nat. Rev. Mol. Cell Biol., 14 (2013),pp. 382-392
|
[12] |
Bunt, S., Denholm, B., Skaer, H. Gene Expr. Patterns, 11 (2011),pp. 72-78
|
[13] |
Bunt, S., Hooley, C., Hu, N. et al. Dev. Cell, 19 (2010),pp. 296-306
|
[14] |
Chen, Y.N., Gu, X., Zhou, X.E. et al. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases Protein Sci., 26 (2017),pp. 834-846
|
[15] |
Dai, J., Ma, M., Feng, Z. et al. Curr. Biol., 27 (2017),pp. 2729-2740
|
[16] |
Denef, N., Chen, Y., Weeks, S.D. et al. Dev. Cell, 14 (2008),pp. 354-364
|
[17] |
Dietzl, G., Chen, D., Schnorrer, F. et al. Nature, 448 (2007),pp. 151-156
|
[18] |
Fessler, L.I., Nelson, R.E., Fessler, J.H. Methods Enzymol., 245 (1994),pp. 271-294
|
[19] |
Fromme, J.C., Schekman, R. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol., 17 (2005),pp. 345-352
|
[20] |
Fukuda, M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci. Rep., 31 (2011),pp. 159-168
|
[21] |
Glick, B.S., Nakano, A. Membrane traffic within the Golgi apparatus Annu. Rev. Cell Dev. Biol., 25 (2009),pp. 113-132
|
[22] |
Gorur, A., Yuan, L., Kenny, S.J. et al. COPII-coated membranes function as transport carriers of intracellular procollagen I J. Cell Biol., 216 (2017),pp. 1745-1759
|
[23] |
Groth, C., Sasamura, T., Khanna, M.R. et al. Development, 140 (2013),pp. 3018-3027
|
[24] |
Haigo, S.L., Bilder, D. Global tissue revolutions in a morphogenetic movement controlling elongation Science, 331 (2011),pp. 1071-1074
|
[25] |
Hutagalung, A.H., Novick, P.J. Role of Rab GTPases in membrane traffic and cell physiology Physiol. Rev., 91 (2011),pp. 119-149
|
[26] |
Hynes, R.O., Zhao, Q. The evolution of cell adhesion J. Cell Biol., 150 (2000),pp. F89-F96
|
[27] |
Jayadev, R., Sherwood, D.R. Basement membranes Curr. Biol., 27 (2017),pp. R207-R211
|
[28] |
Jensen, D., Schekman, R. COPII-mediated vesicle formation at a glance J. Cell Sci., 124 (2011),pp. 1-4
|
[29] |
Jin, L., Pahuja, K.B., Wickliffe, K.E. et al. Ubiquitin-dependent regulation of COPII coat size and function Nature, 482 (2012),pp. 495-500
|
[30] |
Kondylis, V., Rabouille, C. FEBS Lett., 583 (2009),pp. 3827-3838
|
[31] |
Le, T.P., Vuong, L.T., Kim, A.R. et al. Nat. Commun., 7 (2016),p. 11501
|
[32] |
Lerner, D.W., McCoy, D., Isabella, A.J. et al. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis Dev. Cell, 24 (2013),pp. 159-168
|
[33] |
Liu, M., Feng, Z., Ke, H. et al. Tango1 spatially organizes ER exit sites to control ER export J. Cell Biol., 216 (2017),pp. 1035-1049
|
[34] |
Maeda, M., Katada, T., Saito, K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion J. Cell Biol., 216 (2017),pp. 1731-1743
|
[35] |
Malhotra, V., Erlmann, P. The pathway of collagen secretion Annu. Rev. Cell Dev. Biol., 31 (2015),pp. 109-124
|
[36] |
Martinek, N., Shahab, J., Saathoff, M. et al. J. Cell Sci., 121 (2008),pp. 1671-1680
|
[37] |
Morin, X., Daneman, R., Zavortink, M. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 15050-15055
|
[38] |
Myllyharju, J., Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms Trends Genet., 20 (2004),pp. 33-43
|
[39] |
Natzle, J.E., Monson, J.M., McCarthy, B.J. Nature, 296 (1982),pp. 368-371
|
[40] |
Ni, J.-Q., Zhou, R., Czech, B. et al. Br. J. Pharmacol., 8 (2011),pp. 405-407
|
[41] |
Ni, J.Q., Markstein, M., Binari, R. et al. Br. J. Pharmacol., 5 (2008),pp. 49-51
|
[42] |
Nogueira, C., Erlmann, P., Villeneuve, J. et al. SLY1 and Syntaxin 18 specify a distinct pathway for Procollagen VII export from the endoplasmic reticulum eLife, 3 (2014),p. e02784
|
[43] |
Nottingham, R.M., Pusapati, G.V., Ganley, I.G. et al. RUTBC2 protein, a Rab9A effector and GTPase-activating protein for Rab36 J. Biol. Chem., 287 (2012),pp. 22740-22748
|
[44] |
Pan, X., Eathiraj, S., Munson, M. et al. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism Nature, 442 (2006),pp. 303-306
|
[45] |
Pastor-Pareja, J.C., Xu, T. Dev. Cell, 21 (2011),pp. 245-256
|
[46] |
Pfeiffer, S., Ricardo, S., Manneville, J.B. et al. Curr. Biol., 12 (2002),pp. 957-962
|
[47] |
Plutner, H., Cox, A.D., Pind, S. et al. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments J. Cell Biol., 115 (1991),pp. 31-43
|
[48] |
Rehmann, H., Bruening, M., Berghaus, C. et al. Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb FEBS Lett., 582 (2008),pp. 3005-3010
|
[49] |
Rios-Barrera, L.D., Sigurbjornsdottir, S., Baer, M. et al. Dual function for Tango1 in secretion of bulky cargo and in ER-Golgi morphology Proc. Natl. Acad. Sci. U. S. A., 114 (2017)
|
[50] |
Roote, J., Prokop, A. G3 (Bethesda), 3 (2013),pp. 353-358
|
[51] |
Sacher, M., Jiang, Y., Barrowman, J. et al. EMBO J., 17 (1998),pp. 2494-2503
|
[52] |
Saito, K., Chen, M., Bard, F. et al. TANGO1 facilitates Cargo loading at endoplasmic reticulum exit sites Cell, 136 (2009),pp. 891-902
|
[53] |
Spradling, A.C., Rubin, G.M. Science, 218 (1982),pp. 341-347
|
[54] |
Tisdale, E.J., Balch, W.E. Rab2 is essential for the maturation of pre-Golgi intermediates J. Biol. Chem., 271 (1996),pp. 29372-29379
|
[55] |
Urbano, J.M., Torgler, C.N., Molnar, C. et al. Development, 136 (2009),pp. 4165-4176
|
[56] |
Venditti, R., Scanu, T., Santoro, M. et al. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle Science, 337 (2012),pp. 1668-1672
|
[57] |
Venken, K.J., Schulze, K.L., Haelterman, N.A. et al. Br. J. Pharmacol., 8 (2011),pp. 737-743
|
[58] |
Wendler, F., Gillingham, A.K., Sinka, R. et al. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway EMBO J., 29 (2010),pp. 304-314
|
[59] |
Yang, H., Sasaki, T., Minoshima, S. et al. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway Genomics, 90 (2007),pp. 249-260
|
[60] |
Yurchenco, P.D. Basement membranes: cell scaffoldings and signaling platforms Cold Spring Harb. Perspect. Biol., 3 (2011)
|
[61] |
Zang, Y., Wan, M., Liu, M. et al. eLife, 4 (2015),p. e07187
|
[62] |
Zerial, M., McBride, H. Rab proteins as membrane organizers Nat. Rev. Mol. Cell Biol., 2 (2001),pp. 107-117
|
[63] |
Zhang, J., Schulze, K.L., Hiesinger, P.R. et al. Genetics, 176 (2007),pp. 1307-1322
|
[64] |
Zhang, L., Syed, Z.A., Hard, I.D. et al. O-Glycosylation regulates polarized secretion by modulating Tango1 stability Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 7296-7301
|