5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 4
Apr.  2018
Turn off MathJax
Article Contents

DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1

doi: 10.1016/j.jgg.2018.04.003
More Information
  • Corresponding author: E-mail address: meiqnn@hotmail.com (Qian Mei); E-mail address: hanwdrsw69@yahoo.com (Weidong Han)
  • Received Date: 2017-10-30
  • Accepted Date: 2018-04-08
  • Rev Recd Date: 2018-04-06
  • Available Online: 2018-04-13
  • Publish Date: 2018-04-20
  • Microsatellite instability (MSI) defines a subtype of colorectal cancer (CRC) with typical clinicopathologic characteristics. CRCs with MSI (MSI CRCs) frequently acquire accelerated carcinogenesis and 5-FU resistance, and the exact underlying mechanism remains incompletely understood. Our previous study has identified the microRNA (miRNA) expression profile in MSI CRCs. In this study, three miRNAs (miR-181a, miR-135a and miR-302c) were validated by qRT-PCR to be dramatically decreased in 67 CRC samples. Proliferation and apoptosis assays demonstrated that miR-181a/135a/302c function as tumor suppressors via repressing PLAG1/IGF2 signaling. Moreover, we presented compelling evidence that restoration of miR-181a/135a/302c expression promoted sensitivity of MSI CRC cells to 5-FU treatment. miR-181a/135a/302c exerted their effect on chemoresistance through attenuating PLAG1 expression. Notably, the hypermethylation status of MSI CRC accounts for the decrements of miR-181a/135a/302c. Our results contribute to a better understanding of the mechanism of chemoresistance in MSI CRCs, and provide a clue for digging the biomarkers and therapeutic targets for CRC patients.
  • These authors contributed equally to this study.
  • loading
  • [1]
    Abi Habib, W., Brioude, F., Edouard, T. et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction Genet. Med., 20 (2018),pp. 250-258
    [2]
    Borralho, P.M., Kren, B.T., Castro, R.E. et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells FEBS J., 276 (2009),pp. 6689-6700
    [3]
    Bovell, L.C., Shanmugam, C., Putcha, B.D. et al. The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer Clin. Cancer Res., 19 (2013),pp. 3955-3965
    [4]
    Colangelo, T., Fucci, A., Votino, C. et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer Neoplasia, 15 (2013),pp. 1086-1099
    [5]
    Copija, A., Waniczek, D., Witkos, A. et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients Int. J. Mol. Sci., 18 (2017),p. 107
    [6]
    Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
    [7]
    Cummins, J.M., He, Y., Leary, R.J. et al. The colorectal microRNAome Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 3687-3692
    [8]
    Declercq, J., Van Dyck, F., Braem, C.V. et al. Cancer Res., 65 (2005),pp. 4544-4553
    [9]
    di Pietro, M., Sabates Bellver, J., Menigatti, M. et al. Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers Gastroenterology, 129 (2005),pp. 1047-1059
    [10]
    Dorard, C., de Thonel, A., Collura, A. et al. Nat. Med., 17 (2011),pp. 1283-1289
    [11]
    Duval, A., Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability Cancer Res., 62 (2002),pp. 2447-2454
    [12]
    El-Murr, N., Abidi, Z., Wanherdrick, K. et al. miRNA genes constitute new targets for microsatellite instability in colorectal cancer PLoS One, 7 (2012)
    [13]
    Ferlay, J., Soerjomataram, I., Dikshit, R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (2015),pp. E359-E386
    [14]
    Guinney, J., Dienstmann, R., Wang, X. et al. The consensus molecular subtypes of colorectal cancer Nat. Med., 21 (2015),pp. 1350-1356
    [15]
    Holleman, A., Chung, I., Olsen, R.R. et al. Oncogene, 30 (2011),pp. 4386-4398
    [16]
    Hu, G., Chen, D., Li, X. et al. Cancer Biol. Ther., 10 (2010),pp. 190-197
    [17]
    Juma, A.R., Damdimopoulou, P.E., Grommen, S.V. et al. Emerging role of PLAG1 as a regulator of growth and reproduction J. Endocrinol., 228 (2016),pp. R45-R56
    [18]
    Lee, Y.S., Dutta, A. MicroRNAs in cancer Annu. Rev. Pathol., 4 (2009),pp. 199-227
    [19]
    Li, X., Li, X., Liao, D. et al. Curr. Protein Pept. Sci., 16 (2015),pp. 301-309
    [20]
    Luo, C., Qiu, J. miR-181a inhibits cervical cancer development via downregulating GRP78 Oncol. Res., 25 (2017),pp. 1341-1348
    [21]
    Masuda, T., Hayashi, N., Kuroda, Y. et al. MicroRNAs as biomarkers in colorectal cancer Cancers (Basel), 9 (2017),p. 124
    [22]
    Mei, Q., Li, X., Meng, Y. et al. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach PLoS One, 7 (2012)
    [23]
    Mei, Q., Li, X., Zhang, K. et al. Genetic and methylation-induced loss of miR-181a2/181b2 within chr9q33.3 facilitates tumor growth of cervical cancer through the PIK3R3/Akt/FoxO signaling pathway Clin. Cancer Res., 23 (2017),pp. 575-586
    [24]
    Mei, Q., Xue, G., Li, X. et al. Methylation-induced loss of miR-484 in microsatellite-unstable colorectal cancer promotes both viability and IL-8 production via CD137L J. Pathol., 236 (2015),pp. 165-174
    [25]
    Meng, F., Henson, R., Lang, M. et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines Gastroenterology, 130 (2006),pp. 2113-2129
    [26]
    Mima, K., Nishihara, R., Yang, J. et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival Clin. Cancer Res., 22 (2016),pp. 3841-3848
    [27]
    Mohan, H.M., Ryan, E., Balasubramanian, I. et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer Eur. J. Surg. Oncol., 42 (2016),pp. 1680-1686
    [28]
    Pallasch, C.P., Patz, M., Park, Y.J. et al. Blood, 114 (2009),pp. 3255-3264
    [29]
    Pino, M.S., Chung, D.C. The chromosomal instability pathway in colon cancer Gastroenterology, 138 (2010),pp. 2059-2072
    [30]
    Sargent, D.J., Marsoni, S., Monges, G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer J. Clin. Oncol., 28 (2010),pp. 3219-3226
    [31]
    Shen, W.W., Zeng, Z., Zhu, W.X. et al. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells J. Mol. Med. (Berl.), 91 (2013),pp. 989-1000
    [32]
    Sinicrope, F.A., Sargent, D.J. Clinical implications of microsatellite instability in sporadic colon cancers Curr. Opin. Oncol., 21 (2009),pp. 369-373
    [33]
    Sinicrope, F.A., Sargent, D.J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications Clin. Cancer Res., 18 (2012),pp. 1506-1512
    [34]
    Tang, Q., Wu, W., Xu, X. et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression PLoS One, 8 (2013)
    [35]
    Thanki, K., Nicholls, M.E., Gajjar, A. et al. Consensus molecular subtypes of colorectal cancer and their clinical implications Int. Biol. Biomed. J., 3 (2017),pp. 105-111
    [36]
    Thomas, M.L., Hewett, P.J., Ruszkiewicz, A.R. et al. Clinicopathological predictors of benefit from adjuvant chemotherapy for stage C colorectal cancer: microsatellite unstable cases benefit Asia Pac. J. Clin. Oncol., 11 (2015),pp. 343-351
    [37]
    Valeri, N., Gasparini, P., Braconi, C. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2) Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 21098-21103
    [38]
    Van Dyck, F., Declercq, J., Braem, C.V. et al. PLAG1, the prototype of the PLAG gene family: versatility in tumour development (review) Int. J. Oncol., 30 (2007),pp. 765-774
    [39]
    Venderbosch, S., Nagtegaal, I.D., Maughan, T.S. et al. Clin. Cancer Res., 20 (2014),pp. 5322-5330
    [40]
    Voz, M.L., Agten, N.S., Van de Ven, W.J. et al. Cancer Res., 60 (2000),pp. 106-113
    [41]
    Wang, F., Wong, S.C., Chan, L.W. et al. Multiple regression analysis of mRNA-miRNA associations in colorectal cancer pathway BioMed Res. Int., 2014 (2014),p. 676724
    [42]
    Wang, Y., Zhao, L., Xiao, Q. et al. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells Gynecol. Oncol., 141 (2016),pp. 592-601
    [43]
    Xie, T., Huang, M., Wang, Y. et al. MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer Cell. Physiol. Biochem., 40 (2016),pp. 62-76
    [44]
    Xuan, Y., Yang, H., Zhao, L. et al. MicroRNAs in colorectal cancer: small molecules with big functions Cancer Lett., 360 (2015),pp. 89-105
    [45]
    Yang, I.P., Tsai, H.L., Miao, Z.F. et al. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients J. Transl. Med., 14 (2016),p. 108
    [46]
    Zhou, Y., Li, S., Li, J. et al. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer Cell. Physiol. Biochem., 42 (2017),pp. 1431-1446
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return