[1] |
Abi Habib, W., Brioude, F., Edouard, T. et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction Genet. Med., 20 (2018),pp. 250-258
|
[2] |
Borralho, P.M., Kren, B.T., Castro, R.E. et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells FEBS J., 276 (2009),pp. 6689-6700
|
[3] |
Bovell, L.C., Shanmugam, C., Putcha, B.D. et al. The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer Clin. Cancer Res., 19 (2013),pp. 3955-3965
|
[4] |
Colangelo, T., Fucci, A., Votino, C. et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer Neoplasia, 15 (2013),pp. 1086-1099
|
[5] |
Copija, A., Waniczek, D., Witkos, A. et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients Int. J. Mol. Sci., 18 (2017),p. 107
|
[6] |
Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
|
[7] |
Cummins, J.M., He, Y., Leary, R.J. et al. The colorectal microRNAome Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 3687-3692
|
[8] |
Declercq, J., Van Dyck, F., Braem, C.V. et al. Cancer Res., 65 (2005),pp. 4544-4553
|
[9] |
di Pietro, M., Sabates Bellver, J., Menigatti, M. et al. Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers Gastroenterology, 129 (2005),pp. 1047-1059
|
[10] |
Dorard, C., de Thonel, A., Collura, A. et al. Nat. Med., 17 (2011),pp. 1283-1289
|
[11] |
Duval, A., Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability Cancer Res., 62 (2002),pp. 2447-2454
|
[12] |
El-Murr, N., Abidi, Z., Wanherdrick, K. et al. miRNA genes constitute new targets for microsatellite instability in colorectal cancer PLoS One, 7 (2012)
|
[13] |
Ferlay, J., Soerjomataram, I., Dikshit, R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (2015),pp. E359-E386
|
[14] |
Guinney, J., Dienstmann, R., Wang, X. et al. The consensus molecular subtypes of colorectal cancer Nat. Med., 21 (2015),pp. 1350-1356
|
[15] |
Holleman, A., Chung, I., Olsen, R.R. et al. Oncogene, 30 (2011),pp. 4386-4398
|
[16] |
Hu, G., Chen, D., Li, X. et al. Cancer Biol. Ther., 10 (2010),pp. 190-197
|
[17] |
Juma, A.R., Damdimopoulou, P.E., Grommen, S.V. et al. Emerging role of PLAG1 as a regulator of growth and reproduction J. Endocrinol., 228 (2016),pp. R45-R56
|
[18] |
Lee, Y.S., Dutta, A. MicroRNAs in cancer Annu. Rev. Pathol., 4 (2009),pp. 199-227
|
[19] |
Li, X., Li, X., Liao, D. et al. Curr. Protein Pept. Sci., 16 (2015),pp. 301-309
|
[20] |
Luo, C., Qiu, J. miR-181a inhibits cervical cancer development via downregulating GRP78 Oncol. Res., 25 (2017),pp. 1341-1348
|
[21] |
Masuda, T., Hayashi, N., Kuroda, Y. et al. MicroRNAs as biomarkers in colorectal cancer Cancers (Basel), 9 (2017),p. 124
|
[22] |
Mei, Q., Li, X., Meng, Y. et al. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach PLoS One, 7 (2012)
|
[23] |
Mei, Q., Li, X., Zhang, K. et al. Genetic and methylation-induced loss of miR-181a2/181b2 within chr9q33.3 facilitates tumor growth of cervical cancer through the PIK3R3/Akt/FoxO signaling pathway Clin. Cancer Res., 23 (2017),pp. 575-586
|
[24] |
Mei, Q., Xue, G., Li, X. et al. Methylation-induced loss of miR-484 in microsatellite-unstable colorectal cancer promotes both viability and IL-8 production via CD137L J. Pathol., 236 (2015),pp. 165-174
|
[25] |
Meng, F., Henson, R., Lang, M. et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines Gastroenterology, 130 (2006),pp. 2113-2129
|
[26] |
Mima, K., Nishihara, R., Yang, J. et al. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival Clin. Cancer Res., 22 (2016),pp. 3841-3848
|
[27] |
Mohan, H.M., Ryan, E., Balasubramanian, I. et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer Eur. J. Surg. Oncol., 42 (2016),pp. 1680-1686
|
[28] |
Pallasch, C.P., Patz, M., Park, Y.J. et al. Blood, 114 (2009),pp. 3255-3264
|
[29] |
Pino, M.S., Chung, D.C. The chromosomal instability pathway in colon cancer Gastroenterology, 138 (2010),pp. 2059-2072
|
[30] |
Sargent, D.J., Marsoni, S., Monges, G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer J. Clin. Oncol., 28 (2010),pp. 3219-3226
|
[31] |
Shen, W.W., Zeng, Z., Zhu, W.X. et al. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells J. Mol. Med. (Berl.), 91 (2013),pp. 989-1000
|
[32] |
Sinicrope, F.A., Sargent, D.J. Clinical implications of microsatellite instability in sporadic colon cancers Curr. Opin. Oncol., 21 (2009),pp. 369-373
|
[33] |
Sinicrope, F.A., Sargent, D.J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications Clin. Cancer Res., 18 (2012),pp. 1506-1512
|
[34] |
Tang, Q., Wu, W., Xu, X. et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression PLoS One, 8 (2013)
|
[35] |
Thanki, K., Nicholls, M.E., Gajjar, A. et al. Consensus molecular subtypes of colorectal cancer and their clinical implications Int. Biol. Biomed. J., 3 (2017),pp. 105-111
|
[36] |
Thomas, M.L., Hewett, P.J., Ruszkiewicz, A.R. et al. Clinicopathological predictors of benefit from adjuvant chemotherapy for stage C colorectal cancer: microsatellite unstable cases benefit Asia Pac. J. Clin. Oncol., 11 (2015),pp. 343-351
|
[37] |
Valeri, N., Gasparini, P., Braconi, C. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2) Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 21098-21103
|
[38] |
Van Dyck, F., Declercq, J., Braem, C.V. et al. PLAG1, the prototype of the PLAG gene family: versatility in tumour development (review) Int. J. Oncol., 30 (2007),pp. 765-774
|
[39] |
Venderbosch, S., Nagtegaal, I.D., Maughan, T.S. et al. Clin. Cancer Res., 20 (2014),pp. 5322-5330
|
[40] |
Voz, M.L., Agten, N.S., Van de Ven, W.J. et al. Cancer Res., 60 (2000),pp. 106-113
|
[41] |
Wang, F., Wong, S.C., Chan, L.W. et al. Multiple regression analysis of mRNA-miRNA associations in colorectal cancer pathway BioMed Res. Int., 2014 (2014),p. 676724
|
[42] |
Wang, Y., Zhao, L., Xiao, Q. et al. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells Gynecol. Oncol., 141 (2016),pp. 592-601
|
[43] |
Xie, T., Huang, M., Wang, Y. et al. MicroRNAs as regulators, biomarkers and therapeutic targets in the drug resistance of colorectal cancer Cell. Physiol. Biochem., 40 (2016),pp. 62-76
|
[44] |
Xuan, Y., Yang, H., Zhao, L. et al. MicroRNAs in colorectal cancer: small molecules with big functions Cancer Lett., 360 (2015),pp. 89-105
|
[45] |
Yang, I.P., Tsai, H.L., Miao, Z.F. et al. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients J. Transl. Med., 14 (2016),p. 108
|
[46] |
Zhou, Y., Li, S., Li, J. et al. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer Cell. Physiol. Biochem., 42 (2017),pp. 1431-1446
|
[1] | Zheying Zhang, Wenyan Fan, Qingzu Gao, Yifei Han, Jingyu Ma, Wuji Gao, Yuhan Hu, Huifang Zhu, Rui Yang, Haijun Wang, Baoshun Du, Zuoyang Zhang, Jiateng Zhong. Hsa_Circ_0000826 inhibits the proliferation of colorectal cancer by targeting AUF1[J]. Journal of Genetics and Genomics, 2023, 50(3): 192-203. doi: 10.1016/j.jgg.2022.07.006 |
[2] | Amy E. Elias, Thomas A. Nuñez, Bianca Kun, Jill A. Kreiling. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data[J]. Journal of Genetics and Genomics, 2023, 50(2): 108-121. doi: 10.1016/j.jgg.2022.10.003 |
[3] | Feifei Chen, Lei Guo, Jiehui Di, Man Li, Dong Dong, Dongsheng Pei. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling[J]. Journal of Genetics and Genomics, 2021, 48(12): 1091-1103. doi: 10.1016/j.jgg.2021.07.017 |
[4] | Ziyu Wang, Jun Wang. Innate lymphoid cells and gastrointestinal disease[J]. Journal of Genetics and Genomics, 2021, 48(9): 763-770. doi: 10.1016/j.jgg.2021.08.004 |
[5] | Wenhong Zu, Hang Zhang, Xun Lan, Xu Tan. Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs[J]. Journal of Genetics and Genomics, 2020, 47(1): 49-60. doi: 10.1016/j.jgg.2019.12.001 |
[6] | Beiqin Yu, Dongsheng Gu, Xiaoli Zhang, Bingya Liu, Jingwu Xie. The role of GLI2-ABCG2 signaling axis for 5Fu resistance in gastric cancer[J]. Journal of Genetics and Genomics, 2017, 44(8): 375-383. doi: 10.1016/j.jgg.2017.04.008 |
[7] | Hua Li, Bin Hu, Wei Wang, Zhihua Zhang, Yan Liang, Xiaokai Gao, Peng Li, Yongqiang Liu, Lianhe Zhang, Chengcai Chu. Identification of microRNAs in rice root in response to nitrate and ammonium[J]. Journal of Genetics and Genomics, 2016, 43(11): 651-661. doi: 10.1016/j.jgg.2015.12.002 |
[8] | Caijuan Tian, Zhangli Zuo, Jin-Long Qiu. Identification and Characterization of ABA-Responsive MicroRNAs in Rice[J]. Journal of Genetics and Genomics, 2015, 42(7): 393-402. doi: 10.1016/j.jgg.2015.04.008 |
[9] | Longhao Sun, Corrine Ying Xuan Chua, Weijun Tian, Zhixiang Zhang, Paul J. Chiao, Wei Zhang. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma[J]. Journal of Genetics and Genomics, 2015, 42(10): 563-577. doi: 10.1016/j.jgg.2015.07.003 |
[10] | Shengjian Huang, Ming Cai, Yinghui Zheng, Longhai Zhou, Qiang Wang, Liangbiao Chen. miR-888 in MCF-7 Side Population Sphere Cells Directly Targets E-cadherin[J]. Journal of Genetics and Genomics, 2014, 41(1): 35-42. doi: 10.1016/j.jgg.2013.12.002 |
[11] | Liming Ma, Lianghu Qu. The Function of MicroRNAs in Renal Development and Pathophysiology[J]. Journal of Genetics and Genomics, 2013, 40(4): 143-152. doi: 10.1016/j.jgg.2013.03.002 |
[12] | Lingfeng Meng, Liang Chen, Zhaoyong Li, Zheng-Xing Wu, Ge Shan. Roles of MicroRNAs in the Caenorhabditis elegans Nervous System[J]. Journal of Genetics and Genomics, 2013, 40(9): 445-452. doi: 10.1016/j.jgg.2013.07.002 |
[13] | Fen Ji, Xiaohui Lv, Jianwei Jiao. The Role of MicroRNAs in Neural Stem Cells and Neurogenesis[J]. Journal of Genetics and Genomics, 2013, 40(2): 61-66. doi: 10.1016/j.jgg.2012.12.008 |
[14] | Xinmin Zhang, Yuzhen Ma, Xiuying Liu, Qi Zhou, Xiu-Jie Wang. Evolutionary and Functional Analysis of the Key Pluripotency Factor Oct4 and Its Family Proteins[J]. Journal of Genetics and Genomics, 2013, 40(8): 399-412. doi: 10.1016/j.jgg.2013.04.011 |
[15] | Danfeng Jin, Yue Wang, Yuhua Zhao, Ming Chen. MicroRNAs and Their Cross-Talks in Plant Development[J]. Journal of Genetics and Genomics, 2013, 40(4): 161-170. doi: 10.1016/j.jgg.2013.02.003 |
[16] | Aihua Zhao, Quan Zeng, Xiaoyan Xie, Junnian Zhou, Wen Yue, Yali Li, Xuetao Pei. MicroRNA-125b Induces Cancer Cell Apoptosis Through Suppression of Bcl-2 Expression[J]. Journal of Genetics and Genomics, 2012, 39(1): 29-35. doi: 10.1016/j.jgg.2011.12.003 |
[17] | Dan Liu, Bin Yin, Qiang Wang, Wenyi Ju, Yuanjia Chen, Huizhong Qiu, Ji Li, Xiaozhong Peng, Chongmei Lu. Cytoplasmic Poly(A) Binding Protein 4 Is Highly Expressed in Human Colorectal Cancer and Correlates with Better Prognosis[J]. Journal of Genetics and Genomics, 2012, 39(8): 369-374. doi: 10.1016/j.jgg.2012.05.007 |
[18] | Mao Liu, Huiping Chen. The role of microRNAs in colorectal cancer[J]. Journal of Genetics and Genomics, 2010, 37(6): 347-358. doi: 10.1016/S1673-8527(09)60053-9 |
[19] | Xiuying Liu, GuanZheng Luo, Xiujuan Bai, Xiu-Jie Wang. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes[J]. Journal of Genetics and Genomics, 2009, 36(10): 591-601. doi: 10.1016/S1673-8527(08)60151-4 |
[20] | Sihua Peng, Xiaomin Zeng, Xiaobo Li, Xiaoning Peng, Liangbiao Chen. Multi-class cancer classification through gene expression profiles: microRNA versus mRNA[J]. Journal of Genetics and Genomics, 2009, 36(7): 409-416. doi: 10.1016/S1673-8527(08)60130-7 |
1. | Taheri, Z., Zaki-Dizaji, M. Epigenetically Regulating Non-coding RNAs in Colorectal Cancer: Promises and Potentials. Middle East Journal of Digestive Diseases, 2025, 17(1): 40-53. doi:10.34172/mejdd.2025.404 | |
2. | Bhattacharjya, D., Sivalingam, N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397(11): 8445-8475. doi:10.1007/s00210-024-03189-2 | |
3. | Xie, S., Su, Y., Zhang, J. et al. Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway. Translational Cancer Research, 2024, 13(9): 4800-4812. doi:10.21037/tcr-24-292 | |
4. | McIntyre, G., Jackson, Z., Colina, J. et al. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opinion on Therapeutic Targets, 2024, 28(12): 1061-1091. doi:10.1080/14728222.2024.2433687 | |
5. | Li, J., Shen, J., Zhao, Y. et al. Role of miR-181a-5p in cancer (Review). International Journal of Oncology, 2023, 63(4): 108. doi:10.3892/IJO.2023.5556 | |
6. | Wang, Y., Li, Y.-X., Zhang, J. et al. PLAG1 g.8795C>T Mutation Regulates Early Body Weight in Hu Sheep by Weakening miR-139 Binding. Genes, 2023, 14(2): 467. doi:10.3390/genes14020467 | |
7. | Albadari, N., Xie, Y., Li, W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Frontiers in Pharmacology, 2023, 14: 1340401. doi:10.3389/fphar.2023.1340401 | |
8. | Chen, S., Ma, B., Li, X. et al. MYC-mediated silencing of miR-181a-5p promotes pathogenic Th17 responses by modulating AKT3-FOXO3 signaling. iScience, 2022, 25(10): 105176. doi:10.1016/j.isci.2022.105176 | |
9. | Baharudin, R., Rus Bakarurraini, N.Q., Ismail, I. et al. MicroRNA Methylome Signature and Their Functional Roles in Colorectal Cancer Diagnosis, Prognosis, and Chemoresistance. International Journal of Molecular Sciences, 2022, 23(13): 7281. doi:10.3390/ijms23137281 | |
10. | Pouya, F.D., Gazouli, M., Rasmi, Y. et al. MicroRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Molecular Biology Reports, 2022, 49(6): 5165-5178. doi:10.1007/s11033-022-07227-1 | |
11. | Mehrgou, A., Teimourian, S. Update of gene expression/methylation and MiRNA profiling in colorectal cancer; application in diagnosis, prognosis, and targeted therapy. PLoS ONE, 2022, 17(3 March): e0265527. doi:10.1371/journal.pone.0265527 | |
12. | Huang, J., Jing, M., Chen, X. et al. ERp29 forms a feedback regulation loop with microRNA-135a-5p and promotes progression of colorectal cancer. Cell Death and Disease, 2021, 12(11): 965. doi:10.1038/s41419-021-04252-z | |
13. | Azwar, S., Seow, H.F., Abdullah, M. et al. Recent updates on mechanisms of resistance to 5-fluorouracil and reversal strategies in colon cancer treatment. Biology, 2021, 10(9): 854. doi:10.3390/biology10090854 | |
14. | Crudele, F., Bianchi, N., Astolfi, A. et al. The molecular networks of micrornas and their targets in the drug resistance of colon carcinoma. Cancers, 2021, 13(17): 4355. doi:10.3390/cancers13174355 | |
15. | Catellani, C., Ravegnini, G., Sartori, C. et al. GH and IGF System: The Regulatory Role of miRNAs and lncRNAs in Cancer. Frontiers in Endocrinology, 2021, 12: 701246. doi:10.3389/fendo.2021.701246 | |
16. | He, W., Gong, S., Wang, X. et al. DNA methylation integratedly modulates the expression of Pit-Oct-Unt transcription factors in esophageal squamous cell carcinoma. Journal of Cancer, 2021, 12(6): 1634-1643. doi:10.7150/jca.49231 | |
17. | Yeoh, Y., Low, T.Y., Abu, N. et al. Regulation of signal transduction pathways in colorectal cancer: Implications for therapeutic resistance. PeerJ, 2021, 9: e12338. doi:10.7717/peerj.12338 | |
18. | Cheng, J., Cao, X.-K., Peng, S.-J. et al. Transcriptional regulation of the bovine FGFR1 gene facilitates myoblast proliferation under hypomethylation of the promoter. Journal of Cellular Physiology, 2020, 235(11): 8667-8678. doi:10.1002/jcp.29711 | |
19. | Zhou, C., Kong, W., Ju, T. et al. MiR-185-3p mimic promotes the chemosensitivity of CRC cells via AQP5. Cancer Biology and Therapy, 2020, 21(9): 790-798. doi:10.1080/15384047.2020.1761238 | |
20. | Cao, Z., Qiu, J., Yang, G. et al. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biology and Medicine, 2020, 17(3): 569-582. doi:10.20892/j.issn.2095-3941.2020.0033 | |
21. | Pidíkova, P., Reis, R., Herichova, I. Mirna clusters with down-regulated expression in human colorectal cancer and their regulation. International Journal of Molecular Sciences, 2020, 21(13): 1-22. doi:10.3390/ijms21134633 | |
22. | Zhang, X., Xie, K., Zhou, H. et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Molecular Cancer, 2020, 19(1): 47. doi:10.1186/s12943-020-01171-z | |
23. | Kasprzak, A., Adamek, A. Insulin-like growth factor 2 (IGF2) signaling in colorectal cancer—from basic research to potential clinical applications. International Journal of Molecular Sciences, 2019, 20(19): 4915. doi:10.3390/ijms20194915 | |
24. | Wu, Y., Yao, Y., Yun, Y. et al. MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression. Bioscience Reports, 2019, 39(9): BSR20190421. doi:10.1042/BSR20190421 | |
25. | Amirkhah, R., Naderi-Meshkin, H., Shah, J.S. et al. The intricate interplay between epigenetic events, alternative splicing and noncoding RNA deregulation in colorectal cancer. Cells, 2019, 8(8): 929. doi:10.3390/cells8080929 | |
26. | Wang, S., Cheng, Z., Chen, X. et al. microRNA-135a protects against myocardial ischemia-reperfusion injury in rats by targeting protein tyrosine phosphatase 1B. Journal of Cellular Biochemistry, 2019, 120(6): 10421-10433. doi:10.1002/jcb.28327 | |
27. | Luo, Z., Yi, Z.-J., Ou, Z.-L. et al. RELA/NEAT1/miR-302a-3p/RELA feedback loop modulates pancreatic ductal adenocarcinoma cell proliferation and migration. Journal of Cellular Physiology, 2019, 234(4): 3583-3597. doi:10.1002/jcp.27039 | |
28. | Zhang, Z., Gao, Y., Xu, M.-Q. et al. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene, 2019, 681: 45-51. doi:10.1016/j.gene.2018.09.046 | |
29. | Zou, Y., Jing, C., Liu, L. et al. Serum microRNA-135 a as a diagnostic biomarker in non-small cell lung cancer. Medicine (United States), 2019, 98(50): e17814. doi:10.1097/MD.0000000000017814 | |
30. | Braga, E.A., Fridman, M.V., Loginov, V.I. et al. Molecular mechanisms in clear cell renal cell carcinoma: Role of miRNAs and hypermethylated miRNA genes in crucial oncogenic pathways and processes. Frontiers in Genetics, 2019, 10(APR): 320. doi:10.3389/fgene.2019.00320 | |
31. | Braicu, C., Gulei, D., Cojocneanu, R. et al. miR-181a/b therapy in lung cancer: reality or myth?. Molecular Oncology, 2019, 13(1): 9-25. doi:10.1002/1878-0261.12420 | |
32. | Neve, B., Jonckheere, N., Vincent, A. et al. Epigenetic regulation by lncRNAs: An overview focused on UCA1 in colorectal cancer. Cancers, 2018, 10(11): 440. doi:10.3390/cancers10110440 |