5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 4
Apr.  2018
Turn off MathJax
Article Contents

Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB

doi: 10.1016/j.jgg.2018.04.002
More Information
  • Corresponding author: E-mail address: wangjinke@seu.edu.cn (Jinke Wang)
  • Received Date: 2017-08-11
  • Accepted Date: 2018-04-09
  • Rev Recd Date: 2018-04-05
  • Available Online: 2018-04-13
  • Publish Date: 2018-04-20
  • Nuclear factor κB (NF-κB) is a DNA-binding transcription factor. Characterizing its genomic binding sites is crucial for understanding its gene regulatory function and mechanism in cells. This study characterized the binding sites of NF-κB RelA/p65 in the tumor neurosis factor-α (TNFα) stimulated HeLa cells by a precise chromatin immunoprecipitation-sequencing (ChIP-seq). The results revealed that NF-κB binds nontraditional motifs (nt-motifs) containing conserved GGAA quadruplet. Moreover, nt-motifs mainly distribute in the peaks nearby centromeres that contain a larger number of repetitive elements such as satellite, simple repeats and short interspersed nuclear elements (SINEs). This intracellular binding pattern was then confirmed by thein vitro detection, indicating that NF-κB dimers can bind the nontraditional κB (nt-κB) sites with low affinity. However, this binding hardly activates transcription. This study thus deduced that NF-κB binding nt-motifs may realize functions other than gene regulation as NF-κB binding traditional motifs (t-motifs). To testify the deduction, many ChIP-seq data of other cell lines were then analyzed. The results indicate that NF-κB binding nt-motifs is also widely present in other cells. The ChIP-seq data analysis also revealed that nt-motifs more widely distribute in the peaks with low-fold enrichment. Importantly, it was also found that NF-κB binding nt-motifs is mainly present in the resting cells, whereas NF-κB binding t-motifs is mainly present in the stimulated cells. Astonishingly, no known function was enriched by the gene annotation of nt-motif peaks. Based on these results, this study proposed that the nt-κB sites that extensively distribute in larger numbers of repeat elements function as a nuclear reservoir of NF-κB. The nuclear NF-κB proteins stored at nt-κB sites in the resting cells may be recruited to the t-κB sites for regulating its target genes upon stimulation.
  • loading
  • [1]
    Abràmoff, M.D., Magalhães, P.J., Ram, S.J. Image processing with ImageJ Biophot. Int., 11 (2004),pp. 36-42
    [2]
    Albert, I., Wachi, S., Jiang, C. et al. GeneTrack‒a genomic data processing and visualization framework Bioinformatics, 24 (2008),pp. 1305-1306
    [3]
    Antonaki, A., Demetriades, C., Polyzos, A. et al. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements J. Biol. Chem., 286 (2011),pp. 38768-38782
    [4]
    Bailey, T.L., Johnson, J., Grant, C.E. et al. The MEME suite Nucleic Acids Res., 43 (2015),pp. W39-W49
    [5]
    Barish, G.D., Yu, R.T., Karunasiri, M. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response Genes Dev., 24 (2010),pp. 2760-2765
    [6]
    Brown, J.D., Lin, C.Y., Duan, Q. et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis Mol. Cell., 56 (2014),pp. 219-231
    [7]
    Choy, M.K., Movassagh, M., Siggens, L. et al. High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-κB-complex-dependent gene expression in human heart failure Genome Med., 2 (2010),p. 37
    [8]
    Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [9]
    Dai, W., Wu, J., Zhang, S. et al. Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2 Int. J. Biochem. Cell Biol., 89 (2017),pp. 157-170
    [10]
    De Siervi, A., De Luca, P., Moiola, C. et al. Identification of new Rel/NFκB regulatory networks by focused genome location analysis Cell Cycle, 8 (2009),pp. 2093-2100
    [11]
    Fisher, W.W., Li, J.J., Hammonds, A.S. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 21330-21335
    [12]
    Freaney, J.E., Kim, R., Mandhana, R. et al. Extensive cooperation of immune master regulators IRF3 and NFkappaB in RNA Pol II recruitment and pause release in human innate antiviral transcription Cell Rep., 4 (2013),pp. 959-973
    [13]
    Ghosh, A., Saginc, G., Leow, S.C. et al. Telomerase directly regulates NF-κB-dependent transcription Nat. Cell Biol., 14 (2012),pp. 1270-1281
    [14]
    Grant, C.E., Bailey, T.L., Noble, W.S. FIMO: scanning for occurrences of a given motif Bioinformatics, 27 (2011),pp. 1017-1018
    [15]
    Handschick, K., Beuerlein, K., Jurida, L. et al. Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression Mol. Cell., 53 (2014),pp. 193-208
    [16]
    Hayden, M.S., Ghosh, S. Shared principles in NF-κB signaling Cell, 132 (2008),pp. 344-362
    [17]
    Hayden, M.S., Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions Gene Dev., 26 (2012),pp. 203-234
    [18]
    Hoffmann, A., Natoli, G., Ghosh, G. Transcriptional regulation via the NF-κB signaling module Oncogene, 25 (2006),pp. 6706-6716
    [19]
    Jackman, R.W., Wu, C.L., Kandarian, S.C. PLoS One, 7 (2012)
    [20]
    Ji, H., Vokes, S.A., Wong, W.H. A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors Nucleic Acids Res., 34 (2006)
    [21]
    Jin, F., Li, Y., Dixon, J.R. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells Nature, 503 (2013),pp. 290-294
    [22]
    Jurida, L., Soelch, J., Bartkuhn, M. et al. The activation of IL-1-induced enhancers depends on TAK1 kinase activity and NF-κB p65 Cell Rep., 10 (2015),pp. 726-739
    [23]
    Kasowski, M., Grubert, F., Heffelfinger, C. et al. Variation in transcription factor binding among humans Science, 328 (2010),pp. 232-235
    [24]
    Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [25]
    Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
    [26]
    Lee, C., Wevrick, R., Fisher, R. et al. Human centromeric DNAs Hum. Genet., 100 (1997),pp. 291-304
    [27]
    Lim, C.A., Yao, F., Wong, J.J. et al. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation Mol. Cell., 27 (2007),pp. 622-635
    [28]
    Linnell, J., Mott, R., Field, S. et al. Quantitative high-throughput analysis of transcription factor binding specificities Nucleic Acids Res., 32 (2004),p. e44
    [29]
    Luca, F., Maranville, J.C., Richards, A.L. et al. Genetic, functional and molecular features of glucocorticoid receptor binding PLoS One, 8 (2013)
    [30]
    Martone, R., Euskirchen, G., Bertone, P. et al. Distribution of NF-kappaB-binding sites across human chromosome 22 Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12247-12252
    [31]
    Matys, V., Fricke, E., Geffers, R. et al. TRANSFAC: transcriptional regulation, from patterns to profiles Nucleic Acids Res., 31 (2003),pp. 374-378
    [32]
    McLean, C.Y., Bristor, D., Hiller, M. et al. GREAT improves functional interpretation of cis-regulatory regions Nat. Biotechnol., 28 (2010),pp. 495-501
    [33]
    Natoli, G. Control of NF-κB-dependent transcriptional responses by chromatin organization Cold Spring Harb. Perspect. Biol., 1 (2009)
    [34]
    Nijnik, A., Mott, R., Kwiatkowski, D.P. et al. Comparing the fine specificity of DNA binding by NF-κB p50 and p52 using principal coordinates analysis Nucleic Acids Res., 31 (2003),pp. 1497-1501
    [35]
    Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors Oncogene, 18 (1999),pp. 6853-6866
    [36]
    Quinlan, A.R., Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics, 26 (2010),pp. 841-842
    [37]
    Rao, N.A., McCalman, M.T., Moulos, P. et al. Coactivation of GR and NF-κB alters the repertoire of their binding sites and target genes Genome Res., 21 (2011),pp. 1404-1416
    [38]
    Raskatov, J.A., Meier, J.L., Puckett, J.W. et al. Modulation of NF-κB-dependent gene transcription using programmable DNA minor groove binders Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 1023-1028
    [39]
    Rhee, H.S., Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution Cell, 147 (2011),pp. 1408-1419
    [40]
    Saliba, D.G., Heger, A., Eames, H.L. et al. IRF5: RelA interaction targets inflammatory genes in macrophages Cell Rep., 8 (2014),pp. 1308-1317
    [41]
    Schmidt, S.F., Larsen, B.D., Loft, A. et al. Acute TNF-induced repression of cell identity genes is mediated by NF-κB-directed redistribution of cofactors from super-enhancers Genome Res., 25 (2015),pp. 1281-1294
    [42]
    Schreiber, J., Jenner, R.G., Murray, H.L. et al. Coordinated binding of NF-κB family members in the response of human cells to lipopolysaccharide Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 5899-5904
    [43]
    Sen, R., Baltimore, D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism Cell, 47 (1986),pp. 921-928
    [44]
    Sen, R., Smale, S.T. Selectivity of the NF-κB response Cold Spring Harb. Perspect. Biol., 2 (2010)
    [45]
    Siggers, T., Chang, A.B., Teixeira, A. et al. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding Nat. Immunol., 13 (2012),pp. 95-102
    [46]
    Smit, A.F., Hubley, R., Green, P.
    [47]
    Udalova, I.A., Mott, R., Field, D. et al. Quantitative prediction of NF-κB DNA-protein interactions Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 8167-8172
    [48]
    Wang, J.K., Li, T.X., Bai, Y.F. et al. Evaluating the binding affinities of NF-κB p50 homodimer to the wild-type and single-nucleotide mutant Ig-κB sites by the unimolecular dsDNA microarray Anal. Biochem., 316 (2003),pp. 192-201
    [49]
    Wong, D., Teixeira, A., Oikonomopoulos, S. et al. Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits Genome Biol., 12 (2011),p. R70
    [50]
    Xing, Y., Yang, Y., Zhou, F. et al. Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells Gene, 526 (2013),pp. 142-149
    [51]
    Zhang, Y., Liu, T., Meyer, C.A. et al. Model-based analysis of chip-seq (MACS) Genome Biol., 9 (2008),p. R137
    [52]
    Zhao, B., Barrera, L.A., Ersing, I. et al. The NF-κB genomic landscape in lymphoblastoid B cells Cell Rep., 8 (2014),pp. 1595-1606
    [53]
    Zhou, F., Ling, X., Yin, J. et al. Analyzing transcription factor activity using near infrared fluorescent bridge polymerase chain reaction Anal. Biochem., 448 (2014),pp. 105-112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return