5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 5
May  2018
Turn off MathJax
Article Contents

Whole-genome RNAi screen identifies methylation-related genes influencing lipid metabolism in Caenorhabditis elegans

doi: 10.1016/j.jgg.2018.03.005
More Information
  • Corresponding author: E-mail address: pliu@ibp.ac.cn (Pingsheng Liu)
  • Received Date: 2017-09-20
  • Accepted Date: 2018-03-15
  • Rev Recd Date: 2018-03-09
  • Available Online: 2018-05-30
  • Publish Date: 2018-05-20
  • Lipid droplets (LDs) are highly conserved multifunctional cellular organelles and aberrant lipid storage in LDs can lead to many metabolic diseases. However, the molecular mechanisms governing lipid dynamic changes remain elusive, and the high-throughput screen of genes influencing LD morphology was limited by lacking specific LD marker proteins in the powerful genetic tool Caenorhabditis elegans. In this study, we established a new method to conduct whole-genome RNAi screen using LD resident protein DHS-3 as a LD marker, and identified 78 genes involved in significant LD morphologic changes. Among them, mthf-1, as well as a series of methylation-related genes, was found dramatically influencing lipid metabolism. SREBP-1 and SCD1 homologs in C. elegans were involved in the lipid metabolic change of mthf-1(RNAi) worms, and the regulation of ATGL-1 also contributed to it by decreasing triacylglycerol (TAG) hydrolysis. Overall, this study not only identified important genes involved in LD dynamics, but also provided a new tool for LD study usingC. elegans, with implications for the study of lipid metabolic diseases.
  • loading
  • [1]
    Al-Anzi, B., Zinn, K. Genetics of fat storage in flies and worms: what went wrong? Front. Genet., 2 (2011),p. 87
    [2]
    Amelio, I., Cutruzzola, F., Antonov, A. et al. Serine and glycine metabolism in cancer Trends Biochem. Sci., 39 (2014),pp. 191-198
    [3]
    Atherton, H.J., Jones, O.A., Malik, S. et al. FEBS Lett., 582 (2008),pp. 1661-1666
    [4]
    Bartz, R., Li, W.H., Venables, B. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic J. Lipid Res., 48 (2007),pp. 837-847
    [5]
    Binns, D., Januszewski, T., Chen, Y. et al. An intimate collaboration between peroxisomes and lipid bodies J. Cell Biol., 173 (2006),pp. 719-731
    [6]
    Boulin, T., Etchberger, J.F., Hobert, O.
    [7]
    Brasaemle, D.L., Wolins, N.E. Packaging of fat: an evolving model of lipid droplet assembly and expansion J. Biol. Chem., 287 (2012),pp. 2273-2279
    [8]
    Brock, T.J., Browse, J., Watts, J.L. PLoS Genet., 2 (2006),p. e108
    [9]
    Brock, T.J., Browse, J., Watts, J.L. Genetics, 176 (2007),pp. 865-875
    [10]
    Chen, Y., Ding, Y., Yang, L. et al. Nucleic Acids Res., 42 (2014),pp. 1052-1064
    [11]
    Chen, Z., Karaplis, A.C., Ackerman, S.L. et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition Hum. Mol. Genet., 10 (2001),pp. 433-443
    [12]
    Ehmke, M., Luthe, K., Schnabel, R. et al. Genes Nutr., 9 (2014),p. 386
    [13]
    Elmore, C.L., Wu, X., Leclerc, D. et al. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase Mol. Genet. Metabol., 91 (2007),pp. 85-97
    [14]
    Elshorbagy, A.K., Nijpels, G., Valdivia-Garcia, M. et al. S-adenosylmethionine is associated with fat mass and truncal adiposity in older adults J. Nutr., 143 (2013),pp. 1982-1988
    [15]
    Entchev, E.V., Schwudke, D., Zagoriy, V. et al. J. Biol. Chem., 283 (2008),pp. 17550-17560
    [16]
    , Walther, T.C. Lipid droplets finally get a little R-E-S-P-E-C-T Cell, 139 (2009),pp. 855-860
    [17]
    Fujimoto, T., Parton, R.G. Not just fat: the structure and function of the lipid droplet Cold Spring Harb. Perspect. Biol., 3 (2011)
    [18]
    Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S. Protein sensors for membrane sterols Cell, 124 (2006),pp. 35-46
    [19]
    Greenberg, A.S., Coleman, R.A., Kraemer, F.B. et al. The role of lipid droplets in metabolic disease in rodents and humans J. Clin. Invest., 121 (2011),pp. 2102-2110
    [20]
    House, A.A., Eliasziw, M., Cattran, D.C. et al. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial J. Am. Med. Assoc., 303 (2010),pp. 1603-1609
    [21]
    Huang, L., Deng, D., Peng, Z. et al. Cancer Epidemiol., 39 (2015),pp. 328-333
    [22]
    Hulver, M.W., Berggren, J.R., Carper, M.J. et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans Cell Metabol., 2 (2005),pp. 251-261
    [23]
    Kamath, R.S., Ahringer, J. Methods, 30 (2003),pp. 313-321
    [24]
    Kasapoglu, B., Turkay, C., Yalcin, K.S. et al. Clin. Med., 15 (2015),pp. 248-251
    [25]
    Kenyon, C., Chang, J., Gensch, E. et al. Nature, 366 (1993),pp. 461-464
    [26]
    Keszthelyi, D., Troost, F.J., Masclee, A.A. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function Neuro Gastroenterol. Motil., 21 (2009),pp. 1239-1249
    [27]
    Kharbanda, K.K., , Mailliard, M.E., Siford, G.L. et al. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes J. Nutr., 135 (2005),pp. 519-524
    [28]
    Krahmer, N., , Walther, T.C. Balancing the fat: lipid droplets and human disease EMBO Mol. Med., 5 (2013),pp. 905-915
    [29]
    Krahmer, N., Guo, Y., Wilfling, F. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase Cell Metabol., 14 (2011),pp. 504-515
    [30]
    Lee, J.H., Kong, J., Jang, J.Y. et al. Mol. Cell. Biol., 34 (2014),pp. 4165-4176
    [31]
    Liu, P., Bartz, R., Zehmer, J.K. et al. Rab-regulated interaction of early endosomes with lipid droplets Biochim. Biophys. Acta, 1773 (2007),pp. 784-793
    [32]
    Liu, P., Ying, Y., Zhao, Y. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic J. Biol. Chem., 279 (2004),pp. 3787-3792
    [33]
    Mak, H.Y. J. Lipid Res., 53 (2012),pp. 28-33
    [34]
    Martin, S., Driessen, K., Nixon, S.J. et al. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism J. Biol. Chem., 280 (2005),pp. 42325-42335
    [35]
    Martin, S., Parton, R.G. Lipid droplets: a unified view of a dynamic organelle Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 373-378
    [36]
    Maydan, J.S., Flibotte, S., Edgley, M.L. et al. Genome Res., 17 (2007),pp. 337-347
    [37]
    McKay, R.M., McKay, J.P., Avery, L. et al. Dev. Cell, 4 (2003),pp. 131-142
    [38]
    Moessinger, C., Kuerschner, L., Spandl, J. et al. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine J. Biol. Chem., 286 (2011),pp. 21330-21339
    [39]
    Moon, Y.A., Liang, G., Xie, X. et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals Cell Metabol., 15 (2012),pp. 240-246
    [40]
    Morais, C.C., Alves, M.C., Augusto, E.M. et al. J. Nutrigenetics Nutrigenomics, 8 (2015),pp. 105-113
    [41]
    Murphy, D.J. The dynamic roles of intracellular lipid droplets: from archaea to mammals Protoplasma, 249 (2012),pp. 541-585
    [42]
    Na, H., Zhang, P., Chen, Y. et al. Biochim. Biophys. Acta, 1853 (2015),pp. 2481-2491
    [43]
    Noble, T., Stieglitz, J., Srinivasan, S. Cell Metabol., 18 (2013),pp. 672-684
    [44]
    Nomura, T., Horikawa, M., Shimamura, S. et al. Genes Nutr, 5 (2010),pp. 17-27
    [45]
    Ozeki, S., Cheng, J., Tauchi-Sato, K. et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane J. Cell Sci., 118 (2005),pp. 2601-2611
    [46]
    Paton, C.M., Ntambi, J.M. Biochemical and physiological function of stearoyl-CoA desaturase Am. J. Physiol. Endocrinol. Metab., 297 (2009),pp. E28-E37
    [47]
    Pu, J., Ha, C.W., Zhang, S. et al. Interactomic study on interaction between lipid droplets and mitochondria Protein Cell, 2 (2011),pp. 487-496
    [48]
    Scheffler, I.E. A century of mitochondrial research: achievements and perspectives Mitochondrion, 1 (2001),pp. 3-31
    [49]
    Shao, W., Espenshade, P.J. Expanding roles for SREBP in metabolism Cell Metabol., 16 (2012),pp. 414-419
    [50]
    Sibani, S., Christensen, B., O'Ferrall, E. et al. Hum. Mutat., 15 (2000),pp. 280-287
    [51]
    Skibola, C.F., Smith, M.T., Kane, E. et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults Proc. Natl. Acad. Sci. U. S. A., 96 (1999),pp. 12810-12815
    [52]
    Srinivasan, S., Sadegh, L., Elle, I.C. et al. Cell Metabol., 7 (2008),pp. 533-544
    [53]
    Stahl, S.M. L-methylfolate: a vitamin for your monoamines J. Clin. Psychiatr., 69 (2008),pp. 1352-1353
    [54]
    Sze, J.Y., Victor, M., Loer, C. et al. Nature, 403 (2000),pp. 560-564
    [55]
    Tecott, L.H., Sun, L.M., Akana, S.F. et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors Nature, 374 (1995),pp. 542-546
    [56]
    Thiele, C., Spandl, J. Cell biology of lipid droplets Curr. Opin. Cell Biol., 20 (2008),pp. 378-385
    [57]
    Thorpe, C.J., Schlesinger, A., Carter, J.C. et al. Cell, 90 (1997),pp. 695-705
    [58]
    Van Gilst, M.R., Hadjivassiliou, H., Jolly, A. et al. PLoS Biol., 3 (2005),p. e53
    [59]
    Vickers, S.P., Dourish, C.T. Serotonin receptor ligands and the treatment of obesity Curr. Opin. Invest. Drugs, 5 (2004),pp. 377-388
    [60]
    Walker, A.K., Jacobs, R.L., Watts, J.L. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans Cell, 147 (2011),pp. 840-852
    [61]
    Walther, T.C., Lipid droplets and cellular lipid metabolism Annu. Rev. Biochem., 81 (2012),pp. 687-714
    [62]
    Wanders, R.J., Vreken, P., Ferdinandusse, S. et al. Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases Biochem. Soc. Trans., 29 (2001),pp. 250-267
    [63]
    Wang, M.C., O'Rourke, E.J., Ruvkun, G. Science, 322 (2008),pp. 957-960
    [64]
    Watts, J.L. Trends Endocrinol. Metabol., 20 (2009),pp. 58-65
    [65]
    Xia, L.Z., Liu, Y., Xu, X.Z. et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer susceptibility World J. Gastroenterol., 20 (2014),pp. 11429-11438
    [66]
    Yang, F., Vought, B.W., Satterlee, J.S. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis Nature, 442 (2006),pp. 700-704
    [67]
    Yang, L., Ding, Y., Chen, Y. et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans J. Lipid Res., 53 (2012),pp. 1245-1253
    [68]
    Yen, K., Le, T.T., Bansal, A. et al. PLoS One, 5 (2010)
    [69]
    Zehmer, J.K., Huang, Y., Peng, G. et al. A role for lipid droplets in inter-membrane lipid traffic Proteomics, 9 (2009),pp. 914-921
    [70]
    Zhang, P., Na, H., Liu, Z. et al. Mol. Cell. Proteomics, 11 (2012),pp. 317-328
    [71]
    Zhang, S.O., Box, A.C., Xu, N. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 4640-4645
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return