[1] |
Agari, Y., Sato, S., Wakamatsu, T. et al. Proteins, 70 (2008),pp. 1108-1111
|
[2] |
Azzalin, C.M., Lingner, J. Trends Cell Biol., 25 (2015),pp. 29-36
|
[3] |
Ben-Aroya, S., Coombes, C., Kwok, T. et al. Mol. Cell, 30 (2008),pp. 248-258
|
[4] |
Bryan, T.M., Reddel, R.R. Eur. J. Cancer, 33 (1997),pp. 767-773
|
[5] |
Chan, P.P., Lowe, T.M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes Nucleic Acids Res., 44 (2016),pp. D184-D189
|
[6] |
Collinet, B., Friberg, A., Brooks, M.A. et al. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project J. Struct. Biol., 175 (2011),pp. 147-158
|
[7] |
Costessi, A., Mahrour, N., Sharma, V. et al. The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME PLoS One, 7 (2012)
|
[8] |
Dandjinou, A.T., Levesque, N., Larose, S. et al. A phylogenetically based secondary structure for the yeast telomerase RNA Curr. Biol., 14 (2004),pp. 1148-1158
|
[9] |
Daugeron, M.C., Lenstra, T.L., Frizzarin, M. et al. Nucleic Acids Res., 39 (2011),pp. 6148-6160
|
[10] |
de Lange, T. How telomeres solve the end-protection problem Science, 326 (2009),pp. 948-952
|
[11] |
Deutsch, C., El Yacoubi, B., de Crecy-Lagard, V. et al. J. Biol. Chem., 287 (2012),pp. 13666-13673
|
[12] |
Diede, S.J., Gottschling, D.E. Curr. Biol., 11 (2001),pp. 1336-1340
|
[13] |
Downey, M., Houlsworth, R., Maringele, L. et al. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator Cell, 124 (2006),pp. 1155-1168
|
[14] |
Dzikowska, A., Grzelak, A., Gawlik, J. et al. Gene, 573 (2015),pp. 310-320
|
[15] |
El Yacoubi, B., Hatin, I., Deutsch, C. et al. A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification EMBO J., 30 (2011),pp. 882-893
|
[16] |
El Yacoubi, B., Lyons, B., Cruz, Y. et al. The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA Nucleic Acids Res., 37 (2009),pp. 2894-2909
|
[17] |
Evans, S.K., Lundblad, V. Est1 and Cdc13 as comediators of telomerase access Science, 286 (1999),pp. 117-120
|
[18] |
Faure, V., Coulon, S., Hardy, J. et al. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres Mol. Cell, 38 (2010),pp. 842-852
|
[19] |
Galperin, M.Y., Koonin, E.V. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study Nucleic Acids Res., 32 (2004),pp. 5452-5463
|
[20] |
Goudsouzian, L.K., Tuzon, C.T., Zakian, V.A. Mol. Cell, 24 (2006),pp. 603-610
|
[21] |
Gustilo, E.M., Vendeix, F.A., Agris, P.F. tRNA's modifications bring order to gene expression Curr. Opin. Microbiol., 11 (2008),pp. 134-140
|
[22] |
Hieter, R.S.S.a.P. Genetics, 122 (1989),pp. 19-27
|
[23] |
Hu, Y., Tang, H.B., Liu, N.N. et al. Telomerase-null survivor screening identifies novel telomere recombination regulators PLoS Genet., 9 (2013)
|
[24] |
Hurley, J.H. The sugar kinase/heat shock protein 70/actin super family: implications of conserved structure for mechanism Annu. Rev. Biophys. Biomol. Struct., 25 (1996),pp. 137-162
|
[25] |
Juhling, F., Morl, M., Hartmann, R.K. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes Nucleic Acids Res., 37 (2009),pp. D159-D162
|
[26] |
Kato, Y., Kawasaki, H., Ohyama, Y. et al. Genetics, 188 (2011),pp. 871-882
|
[27] |
Kisseleva-Romanova, E., Lopreiato, R., Baudin-Baillieu, A. et al. Yeast homolog of a cancer-testis antigen defines a new transcription complex EMBO J., 25 (2006),pp. 3576-3585
|
[28] |
Kristoffersen, P., Jensen, G.B., Gerdes, K. et al. Bacterial toxin-antitoxin gene system as containment control in yeast cells Appl. Environ. Microbiol., 66 (2000),pp. 5524-5526
|
[29] |
Kuratani, M., Kasai, T., Akasaka, R. et al. Proteins, 79 (2011),pp. 2065-2075
|
[30] |
Kyriakou, D., Stavrou, E., Demosthenous, P. et al. BMC Biol., 14 (2016),p. 106
|
[31] |
Larrivee, M., LeBel, C., Wellinger, R.J. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex Genes Dev., 18 (2004),pp. 1391-1396
|
[32] |
Lauhon, C.T. Biochemistry, 51 (2012),pp. 8950-8963
|
[33] |
Le, S., Moore, J.K., Haber, J.E. et al. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase Genetics, 152 (1999),pp. 143-152
|
[34] |
Lemieux, B., Laterreur, N., Perederina, A. et al. Active yeast telomerase shares subunits with ribonucleoproteins RNase P and RNase MRP Cell, 165 (2016),pp. 1171-1181
|
[35] |
Lin, C.A., Ellis, S.R., True, H.L. The Sua5 protein is essential for normal translational regulation in yeast Mol. Cell. Biol., 30 (2010),pp. 354-363
|
[36] |
Lopreiato, R., Facchin, S., Sartori, G. et al. Biochem. J., 377 (2004),pp. 395-405
|
[37] |
Lundblad, V., Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues Est1-senescence Cell, 73 (1993),pp. 347-360
|
[38] |
Maicher, A., Lockhart, A., Luke, B. Breaking new ground: digging into TERRA function Biochim. Biophys. Acta, 1839 (2014),pp. 387-394
|
[39] |
Mao, D.Y., Neculai, D., Downey, M. et al. Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine Mol. Cell, 32 (2008),pp. 259-275
|
[40] |
McEachern, M.J., Haber, J.E. Break-induced replication and recombinational telomere elongation in yeast Annu. Rev. Biochem., 75 (2006),pp. 111-135
|
[41] |
Meng, F.L., Chen, X.F., Hu, Y. et al. Cell Res., 20 (2010),pp. 495-498
|
[42] |
Meng, F.L., Hu, Y., Shen, N. et al. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication EMBO J., 28 (2009),pp. 1466-1478
|
[43] |
Nichols, C.E., Lamb, H.K., Thompson, P. et al. Protein Sci., 22 (2013),pp. 628-640
|
[44] |
Oberto, J., Breuil, N., Hecker, A. et al. Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance Nucleic Acids Res., 37 (2009),pp. 5343-5352
|
[45] |
Pardo, B., Marcand, P. Rap1 prevents telomere fusions by nonhomologous end joining EMBO J., 24 (2005),pp. 3117-3127
|
[46] |
Peng, J., He, M.H., Duan, Y.M. et al. Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity PLoS Genet., 11 (2015)
|
[47] |
Perrochia, L., Crozat, E., Hecker, A. et al. Nucleic Acids Res., 41 (2013),pp. 1953-1964
|
[48] |
Perrochia, L., Guetta, D., Hecker, A. et al. Nucleic Acids Res., 41 (2013),pp. 9484-9499
|
[49] |
Pfeiffer, V., Lingner, J. Replication of telomeres and the regulation of telomerase Cold Spring Harb. Perspect. Biol., 5 (2013)
|
[50] |
Podlevsky, J.D., Bley, C.J., Omana, R.V. et al. The telomerase database Nucleic Acids Res., 36 (2008),pp. D339-D343
|
[51] |
Ribeyre, C., Shore, D. Anticheckpoint pathways at telomeres in yeast Nat. Struct. Mol. Biol., 19 (2012),pp. 307-313
|
[52] |
Singer, M.S., Gottschling, D.E. Science, 266 (1994),pp. 404-409
|
[53] |
Srinivasan, M., Mehta, P., Yu, Y. et al. The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A EMBO J., 30 (2011),pp. 873-881
|
[54] |
Takata, H., Tanaka, Y., Matsuura, A. Mol. Cell, 17 (2005),pp. 573-583
|
[55] |
Thiaville, P.C., El Yacoubi, B., Perrochia, L. et al. Cross kingdom functional conservation of the core universally conserved threonylcarbamoyladenosine tRNA synthesis enzymes Eukaryot. Cell, 13 (2014),pp. 1222-1231
|
[56] |
Thiaville, P.C., Legendre, R., Rojas-Benitez, D. et al. Microb. Cell, 3 (2016),pp. 29-45
|
[57] |
Tsang, T.H., Buck, M., Ames, B.N. Sequence specificity of tRNA-modifying enzymes: an analysis of 258 tRNA sequences Biochim. Biophys. Acta, 741 (1983),pp. 180-196
|
[58] |
Wan, L.C., Maisonneuve, P., Szilard, R.K. et al. Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7 Nucleic Acids Res., 45 (2017),pp. 805-817
|
[59] |
Wan, L.C., Mao, D.Y., Neculai, D. et al. Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system Nucleic Acids Res., 41 (2013),pp. 6332-6346
|
[60] |
Wellinger, R.J., Zakian, V.A. Genetics, 191 (2012),pp. 1073-1105
|
[61] |
Wu, Y., Zakian, V.A. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 20362-20369
|
[62] |
Wu, Z., Liu, J., Zhang, Q.D. et al. Rad6-Bre1-mediated H2B ubiquitination regulates telomere replication by promoting telomere-end resection Nucleic Acids Res., 45 (2017),pp. 3308-3322
|
[63] |
Yarian, C., Townsend, H., Czestkowski, W. et al. Accurate translation of the genetic code depends on tRNA modified nucleosides J. Biol. Chem., 277 (2002),pp. 16391-16395
|
[64] |
Zappulla, D.C., Cech, T.R. Yeast telomerase RNA: a flexible scaffold for protein subunits Proc. Natl. Acad. Sci. U.S.A., 101 (2004),pp. 10024-10029
|
[65] |
Zhang, W., Collinet, B., Graille, M. et al. Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex Nucleic Acids Res., 43 (2015),pp. 3358-3372
|
[66] |
Zhou, X.-L., Ruan, Z.-R., Huang, Q. et al. Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote Nucleic Acids Res., 41 (2013),pp. 302-314
|