5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 6
Jun.  2018
Turn off MathJax
Article Contents

Caudal dorsal artery generates hematopoietic stem and progenitor cells via the endothelial-to-hematopoietic transition in zebrafish

doi: 10.1016/j.jgg.2018.02.010
More Information
  • Corresponding author: E-mail address: lluo@swu.edu.cn (Lingfei Luo); E-mail address: alisir@swu.edu.cn (Li Li)
  • Received Date: 2017-09-05
  • Accepted Date: 2018-02-11
  • Rev Recd Date: 2017-12-25
  • Available Online: 2018-06-08
  • Publish Date: 2018-06-20
  • Zebrafish hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium of the ventral wall of the dorsal aorta (DA) through the endothelial-to-hematopoietic transition (EHT) from approximately 30 to 60 hours post fertilization (hpf). However, whether other artery sites can generate HSPCs de novo remains unclear. In this study, using live imaging and lineage tracing, we found that the caudal dorsal artery (CDA) in the caudal hematopoietic tissue directly gave rise to HSPCs through EHT. This process initiated from approximately 60 hpf and terminated at approximately 156 hpf. Compared with that in the DA, fewer EHT events were observed in the CDA. The EHT events in the DA and CDA were similarly regulated by Runx1 but differentially influenced by blood flow (i.e., the EHT frequency in CDA was affected to a lesser extent when circulation was compromised in thetnnt2a mutant). Therefore, the whole artery, including both DA and CDA, was endowed with the ability to produce HSPCs during a much longer time period. Coincidently, the lineage tracing results indicated that adult hematopoietic cells originated from the embryonic endothelium, and those produced later preferentially colonized the adult thymus. Collectively, our study revealed that the CDA serves as an additional source of hematopoiesis, and it shows similar but not identical properties with the DA.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Adamo, L., Naveiras, O., Wenzel, P.L. et al. Biomechanical forces promote embryonic haematopoiesis Nature, 459 (2009),pp. 1131-1135
    [2]
    Ando, R., Hama, H., Yamamoto-Hino, M. et al. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein Proc. Natl. Acad. Sci. U.S.A., 99 (2002),pp. 12651-12656
    [3]
    Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
    [4]
    Bertrand, J.Y., Kim, A.D., Violette, E.P. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development, 134 (2007),pp. 4147-4156
    [5]
    Boisset, J.C., van Cappellen, W., Andrieu-Soler, C. et al. Nature, 464 (2010),pp. 116-120
    [6]
    Burns, C.E., Traver, D., Mayhall, E. et al. Hematopoietic stem cell fate is established by the Notch-Runx pathway Genes Dev., 19 (2005),pp. 2331-2342
    [7]
    Burns, C.E., Zon, L.I. Homing sweet homing: odyssey of hematopoietic stem cells Immunity, 25 (2006),pp. 859-862
    [8]
    Chen, J., Ruan, H., Ng, S.M. et al. Genes Dev., 19 (2005),pp. 2900-2911
    [9]
    Chen, M.J., Yokomizo, T., Zeigler, B.M. et al. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter Nature, 457 (2009),pp. 887-891
    [10]
    Chi, N.C., Shaw, R.M., De Val, S. et al. Genes Dev., 22 (2008),pp. 734-739
    [11]
    Choi, K., Kennedy, M., Kazarov, A. et al. A common precursor for hematopoietic and endothelial cells Development, 125 (1998),pp. 725-732
    [12]
    Davidson, A.J., Zon, L.I. The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis Oncogene, 23 (2004),pp. 7233-7246
    [13]
    de Bruijn, M.F., Speck, N.A., Peeters, M.C. et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo EMBO J., 19 (2000),pp. 2465-2474
    [14]
    Diaz, M.F., Li, N., Lee, H.J. et al. Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis J. Exp. Med., 212 (2015),pp. 665-680
    [15]
    Eilken, H.M., Nishikawa, S., Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium Nature, 457 (2009),pp. 896-900
    [16]
    Ema, H., Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo Blood, 95 (2000),pp. 2284-2288
    [17]
    Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. et al. The placenta is a niche for hematopoietic stem cells Dev. Cell, 8 (2005),pp. 365-375
    [18]
    Gering, M., Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos Dev. Cell, 8 (2005),pp. 389-400
    [19]
    Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light Nat. Biotechnol., 24 (2006),pp. 461-465
    [20]
    He, J., Lu, H., Zou, Q. et al. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish Gastroenterology, 146 (2014),pp. 789-800
    [21]
    Huber, T.L., Kouskoff, V., Fehling, H.J. et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo Nature, 432 (2004),pp. 625-630
    [22]
    Inman, K.E., Downs, K.M. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus Genesis, 45 (2007),pp. 237-258
    [23]
    Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
    [24]
    Jin, H., Xu, J., Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development Blood, 109 (2007),pp. 5208-5214
    [25]
    Jin, S.W., Beis, D., Mitchell, T. et al. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish Development, 132 (2005),pp. 5199-5209
    [26]
    Jing, L., Tamplin, O.J., Chen, M.J. et al. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence J. Exp. Med., 212 (2015),pp. 649-663
    [27]
    Keyte, A.L., Smith, K.K. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution Semin. Cell Dev. Biol., 34 (2014),pp. 99-107
    [28]
    Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O. et al. Immature hematopoietic stem cells undergo maturation in the fetal liver Development, 139 (2012),pp. 3521-3530
    [29]
    Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Nature, 464 (2010),pp. 601-605
    [30]
    Kim, P.G., Nakano, H., Das, P.P. et al. Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence J. Exp. Med., 212 (2015),pp. 633-648
    [31]
    Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
    [32]
    Kissa, K., Murayama, E., Zapata, A. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood, 111 (2008),pp. 1147-1156
    [33]
    Kondo, M., Wagers, A.J., Manz, M.G. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application Annu. Rev. Immunol., 21 (2003),pp. 759-806
    [34]
    Kwan, W., North, T.E. Netting novel regulators of hematopoiesis and hematologic malignancies in zebrafish Curr. Top. Dev. Biol., 124 (2017),pp. 125-160
    [35]
    Lam, E.Y., Hall, C.J., Crosier, P.S. et al. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells Blood, 116 (2010),pp. 909-914
    [36]
    Lancrin, C., Sroczynska, P., Stephenson, C. et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage Nature, 457 (2009),pp. 892-895
    [37]
    Li, L., Yan, B., Shi, Y.Q. et al. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration J. Biol. Chem., 287 (2012),pp. 25353-25360
    [38]
    Li, Z., Lan, Y., He, W. et al. Mouse embryonic head as a site for hematopoietic stem cell development Cell Stem Cell, 11 (2012),pp. 663-675
    [39]
    Liu, C., Wu, C., Yang, Q. et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction Immunity, 44 (2016),pp. 1162-1176
    [40]
    Medvinsky, A., Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region Cell, 86 (1996),pp. 897-906
    [41]
    Murayama, E., Kissa, K., Zapata, A. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity, 25 (2006),pp. 963-975
    [42]
    North, T.E., Goessling, W., Peeters, M. et al. Hematopoietic stem cell development is dependent on blood flow Cell, 137 (2009),pp. 736-748
    [43]
    North, T.E., Goessling, W., Walkley, C.R. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis Nature, 447 (2007),pp. 1007-1011
    [44]
    Orkin, S.H., Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology Cell, 132 (2008),pp. 631-644
    [45]
    Ottersbach, K., Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region Dev. Cell, 8 (2005),pp. 377-387
    [46]
    Rossi, A., Kontarakis, Z., Gerri, C. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns Nature, 524 (2015),pp. 230-233
    [47]
    Sood, R., English, M.A., Belele, C.L. et al. Blood, 115 (2010),pp. 2806-2809
    [48]
    Tamplin, O.J., Durand, E.M., Carr, L.A. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche Cell, 160 (2015),pp. 241-252
    [49]
    Tian, Y., Xu, J., Feng, S. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells J. Exp. Med., 214 (2017),pp. 3347-3360
    [50]
    Traver, D. Going with the flow: how shear stress signals the emergence of adult hematopoiesis J. Exp. Med., 212 (2015),p. 600
    [51]
    Tsinkalovsky, O., Vik-Mo, A.O., Ferreira, S. et al. Zebrafish kidney marrow contains ABCG2-dependent side population cells exhibiting hematopoietic stem cell properties Differentiation, 75 (2007),pp. 175-183
    [52]
    Wang, L., Zhang, P., Wei, Y. et al. Blood, 118 (2011),pp. 4102-4110
    [53]
    Xu, J., Zhu, L., He, S. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish Dev. Cell, 34 (2015),pp. 632-641
    [54]
    Zhang, P., He, Q., Chen, D. et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition Cell Res., 25 (2015),pp. 1093-1107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return