[1] |
Agudelo, D., Duringer, A., Bozoyan, L. et al. Marker-free coselection for CRISPR-driven genome editing in human cells Nat. Methods, 14 (2017),pp. 615-620
|
[2] |
Bae, S., Kweon, J., Kim, H.S. et al. Microhomology-based choice of Cas9 nuclease target sites Nat. Methods, 11 (2014),pp. 705-706
|
[3] |
Chenouard, V., Brusselle, L., Heslan, J.M. et al. A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis J. Genet. Genomics, 43 (2016),pp. 341-348
|
[4] |
Chuai, G., Yang, F., Yan, J. et al. Deciphering relationship between microhomology and in-frame mutation occurrence in human CRISPR-based gene knockout Mol. Ther. Nucleic Acids, 5 (2016),p. e323
|
[5] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[6] |
Gravells, P., Ahrabi, S., Vangala, R.K. et al. Hum. Mol. Genet., 24 (2015),pp. 7097-7110
|
[7] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[8] |
Kim, D., Kim, S., Kim, S. et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq Genome Res., 26 (2016),pp. 406-415
|
[9] |
Liao, S.R., Tammaro, M., Yan, H. Nucleic Acids Res., 43 (2015),p. e134
|
[10] |
Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
|
[11] |
Maresch, R., Mueller, S., Veltkamp, C. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice Nat. Commun., 7 (2016),p. 10770
|
[12] |
Mashal, R.D., Koontz, J., Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases Nat. Genet., 9 (1995),pp. 177-183
|
[13] |
Peter Qiu, Shandilya, Harini, D'Alessio, James M., O' Connor, Kevin, Durocher, Jeffrey, Gerard, G.F. Mutation detection using Surveyor™ nuclease Biotechniques, 36 (2004),pp. 702-707
|
[14] |
Ramlee, M.K., Yan, T., Cheung, A.M. et al. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis Sci. Rep., 5 (2015),p. 15587
|
[15] |
Seitz, V., Schaper, S., Droge, A. et al. A new method to prevent carry-over contaminations in two-step PCR NGS library preparations Nucleic Acids Res., 43 (2015)
|
[16] |
Shalem, O., Sanjana, N.E., Zhang, F. High-throughput functional genomics using CRISPR-Cas9 Nat. Rev. Genet., 16 (2015),pp. 299-311
|
[17] |
van Overbeek, M., Capurso, D., Carter, M.M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks Mol. Cell, 63 (2016),pp. 633-646
|
[18] |
Wu, X., Kriz, A.J., Sharp, P.A. Target specificity of the CRISPR-Cas9 system Quant. Biol., 2 (2014),pp. 59-70
|
[19] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[20] |
Zhang, Y., Ge, X., Yang, F. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells Sci. Rep., 4 (2014),p. 5405
|
[21] |
Zhang, Y., Long, C., Li, H. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice Sci. Adv., 3 (2017)
|
[22] |
Zhou, Y., Zhu, S., Cai, C. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells Nature, 509 (2014),pp. 487-491
|