[1] |
Abdel-Wahab, O., Mullally, A., Hedvat, C. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies Blood, 114 (2009),pp. 144-147
|
[2] |
Allen, E.G., Freeman, S.B., Druschel, C. et al. Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunction: a report from the Atlanta and National Down Syndrome Projects Hum. Genet., 125 (2009),pp. 41-52
|
[3] |
Barzilai, N., Huffman, D.M., Muzumdar, R.H. et al. The critical role of metabolic pathways in aging Diabetes, 61 (2012),pp. 1315-1322
|
[4] |
Baylin, S.B., Jones, P.A. A decade of exploring the cancer epigenome - biological and translational implications Nat. Rev. Cancer, 11 (2011),pp. 726-734
|
[5] |
Baylin, S.B., Jones, P.A. Epigenetic determinants of cancer Cold Spring Harb. Perspect. Biol., 8 (2016)
|
[6] |
Bird, A. DNA methylation patterns and epigenetic memory Genes Dev., 16 (2002),pp. 6-21
|
[7] |
Board, R.E., Knight, L., Greystoke, A. et al. DNA methylation in circulating tumour DNA as a biomarker for cancer Biomark. Insights, 2 (2008),pp. 307-319
|
[8] |
Botezatu, I. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism Clin. Chem., 46 (2000),pp. 1078-1084
|
[9] |
Branco, M.R., Ficz, G., Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome Nat. Rev. Genet., 13 (2011),pp. 7-13
|
[10] |
Burnham, P., Khush, K., De Vlaminck, I. Myriad applications of circulating cell-free DNA in precision organ transplant monitoring Annal. Am. Thorac. Soc., 14 (2017),pp. S237-S241
|
[11] |
Chan, K.C., Jiang, P., Chan, C.W. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 18761-18768
|
[12] |
Chan, K.C.A., Leung, S.F., Yeung, S.W. et al. Quantitative analysis of the transrenal excretion of circulating EBV DNA in nasopharyngeal carcinoma patients Clin. Cancer Res., 14 (2008),p. 4809
|
[13] |
Chim, S.S., Jin, S., Lee, T.Y. et al. Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21 Clin. Chem., 54 (2008),pp. 500-511
|
[14] |
Chim, S.S.C., Tong, Y.K., Chiu, R.W.K. et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 14753-14758
|
[15] |
Cimmino, L., Abdel-Wahab, O., Levine, R.L. et al. TET family proteins and their role in stem cell differentiation and transformation Cell Stem Cell, 9 (2011),pp. 193-204
|
[16] |
Dalton, S.R., Bellacosa, A. DNA demethylation by TDG Epigenomics, 4 (2012),pp. 459-467
|
[17] |
Daly, K.P. Circulating donor-derived cell-free DNA: a true biomarker for cardiac allograft rejection? Ann. Transl. Med., 3 (2015),p. 47
|
[18] |
De Mattos-Arruda, L. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma Nat. Commun., 6 (2015),p. 8839
|
[19] |
De Mattos-Arruda, L., Mayor, R., Ng, C.K. et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma Nat. Commun., 6 (2015),p. 8839
|
[20] |
De Mattos-Arruda, L., Weigelt, B., Cortes, J. et al. Ann. Oncol., 25 (2014),pp. 1729-1735
|
[21] |
De Vlaminck, I. Noninvasive monitoring of infection and rejection after lung transplantation Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 13336-13341
|
[22] |
Delhommeau, F., Dupont, S., Della Valle, V. et al. N. Engl. J. Med., 360 (2009),pp. 2289-2301
|
[23] |
Diehl, F., Schmidt, K., Choti, M.A. et al. Circulating mutant DNA to assess tumor dynamics Nat. Med., 14 (2008),pp. 985-990
|
[24] |
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps Nat. Rev. Genet., 8 (2007),pp. 286-298
|
[25] |
Feng, S., Jacobsen, S.E., Reik, W. Epigenetic reprogramming in plant and animal development Science, 330 (2010),pp. 622-627
|
[26] |
Fleischhacker, M., Schmidt, B. Circulating nucleic acids (CNAs) and cancer - a survey Biochim. Biophys. Acta, 1775 (2007),pp. 181-232
|
[27] |
Frommer, M., McDonald, L.E., Millar, D.S. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 1827-1831
|
[28] |
Gadi, V.K., Nelson, J.L., Boespflug, N.D. et al. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection Clin. Chem., 52 (2006),pp. 379-382
|
[29] |
Garcia-Olmo, D.C., Dominguez, C., Garcia-Arranz, M. et al. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells Cancer Res., 70 (2010),pp. 560-567
|
[30] |
Globisch, D., Munzel, M., Muller, M. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates PLoS One, 5 (2010)
|
[31] |
Gold, B., Cankovic, M., Furtado, L.V. et al. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology J. Mol. Diagn., 17 (2015),pp. 209-224
|
[32] |
Gould, T.J., Lysov, Z., Liaw, P.C. Extracellular DNA and histones: double-edged swords in immunothrombosis J. Thromb. Haemostasis, 13 (2015),pp. S82-S91
|
[33] |
Guibert, J., Benachi, A., Grebille, A.G. et al. Hum. Reprod., 18 (2003),pp. 1733-1736
|
[34] |
Guo, H., Zhu, P., Wu, X. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing Genome Res., 23 (2013),pp. 2126-2135
|
[35] |
Guo, S., Diep, D., Plongthongkum, N. et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA Nat. Genet., 49 (2017),pp. 635-642
|
[36] |
Haffner, M.C., Chaux, A., Meeker, A.K. et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers Oncotarget, 2 (2011),pp. 627-637
|
[37] |
Han, D., Lu, X., Shih, A.H. et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations Mol. Cell, 63 (2016),pp. 711-719
|
[38] |
He, Y.F., Li, B.Z., Li, Z. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA Science, 333 (2011),pp. 1303-1307
|
[39] |
Hernndez, H.G., Tse, M.Y., Pang, S.C. et al. Optimizing methodologies for PCR-based DNA methylation analysis Biotechniques, 55 (2013),pp. 181-197
|
[40] |
Hsu, C.H., Peng, K.L., Kang, M.L. et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases Cell Rep., 2 (2012),pp. 568-579
|
[41] |
Irizarry, R.A., Ladd-Acosta, C., Wen, B. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores Nat. Genet., 41 (2009),pp. 178-186
|
[42] |
Ito, S., D'Alessio, A.C., Taranova, O.V. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification Nature, 466 (2010),pp. 1129-1133
|
[43] |
Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals Nat. Genet., 33 (2003),pp. 245-254
|
[44] |
Jahr, S. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells Cancer Res., 61 (2001),pp. 1659-1665
|
[45] |
Jamal-Hanjani, M., Wilson, G.A., Horswell, S. et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer Ann. Oncol., 27 (2016),pp. 862-867
|
[46] |
Jin, S.G., Jiang, Y., Qiu, R. et al. Cancer Res., 71 (2011),pp. 7360-7365
|
[47] |
Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond Nat. Rev. Genet., 13 (2012),pp. 484-492
|
[48] |
Jung, K., Fleischhacker, M., Rabien, A. Cell-free DNA in the blood as a solid tumor biomarker-a critical appraisal of the literature Clin. Chim. Acta, 411 (2010),pp. 1611-1624
|
[49] |
Kaplan, M.J., Radic, M. Neutrophil extracellular traps: double-edged swords of innate immunity J. Immunol., 189 (2012),pp. 2689-2695
|
[50] |
Kinnings, S.L., Geis, J.A., Almasri, E. et al. Factors affecting levels of circulating cell-free fetal DNA in maternal plasma and their implications for noninvasive prenatal testing Prenat. Diagn., 35 (2015),pp. 816-822
|
[51] |
Konstandin, N., Bultmann, S., Szwagierczak, A. et al. Leukemia, 25 (2011),pp. 1649-1652
|
[52] |
Kraus, T.F., Guibourt, V., Kretzschmar, H.A. 5-Hydroxymethylcytosine, the “Sixth Base”, during brain development and ageing J. Neural Transm. (Vienna), 122 (2015),pp. 1035-1043
|
[53] |
Kriaucionis, S., Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain Science, 324 (2009),pp. 929-930
|
[54] |
Legendre, C., Gooden, G.C., Johnson, K. et al. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer Clin. Epigenetics, 7 (2015),p. 100
|
[55] |
Lehmann-Werman, R., Neiman, D., Zemmour, H. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. E1826-E1834
|
[56] |
Leon, S.A., Shapiro, B., Sklaroff, D.M. et al. Free DNA in the serum of cancer patients and the effect of therapy Cancer Res., 37 (1977),pp. 646-650
|
[57] |
Li, W., Zhang, X., Lu, X. et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers Cell Res., 27 (2017),pp. 1243-1257
|
[58] |
Lian, C.G., Xu, Y., Ceol, C. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma Cell, 150 (2012),pp. 1135-1146
|
[59] |
Lissa, D., Robles, A.I. Methylation analyses in liquid biopsy Transl. Lung Cancer Res., 5 (2016),pp. 492-504
|
[60] |
Lister, R., O'Malley, R.C., Tonti-Filippini, J. et al. Cell, 133 (2008),pp. 523-536
|
[61] |
Lister, R., Pelizzola, M., Dowen, R.H. et al. Human DNA methylomes at base resolution show widespread epigenomic differences Nature, 462 (2009),pp. 315-322
|
[62] |
Lo, Y.M. Rapid clearance of fetal DNA from maternal plasma Am. J. Hum. Genet., 64 (1999),pp. 218-224
|
[63] |
Lo, Y.M., Chan, K.C., Sun, H. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus Sci. Transl. Med., 2 (2010)
|
[64] |
Lo, Y.M.D. Presence of fetal DNA in maternal plasma and serum Lancet, 350 (1997),pp. 485-487
|
[65] |
Lo, Y.M.D. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus Sci. Transl. Med., 2 (2010)
|
[66] |
Lo, Y.M.D., Tein, M.S.C., Pang, C.C.P. et al. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients Lancet, 351 (1998),pp. 1329-1330
|
[67] |
Lui, Y.Y., Woo, K.S., Wang, A.Y. et al. Origin of plasma cell-free DNA after solid organ transplantation Clin. Chem., 49 (2003),pp. 495-496
|
[68] |
Lun, F.M., Chiu, R.W., Sun, K. et al. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA Clin. Chem., 59 (2013),pp. 1583-1594
|
[69] |
Maiti, A., Drohat, A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites J. Biol. Chem., 286 (2011),pp. 35334-35338
|
[70] |
Mandel, P., Metais, P. Les acides nucléiques du plasma sanguin chez l’homme C. R. Acad. Sci. Paris, 142 (1948),pp. 241-243
|
[71] |
Meissner, A., Mikkelsen, T.S., Gu, H. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells Nature, 454 (2008),pp. 766-770
|
[72] |
Mithani, S.K. Mitochondrial resequencing arrays detect tumor-specific mutations in salivary rinses of patients with head and neck cancer Clin. Cancer Res., 13 (2007),pp. 7335-7340
|
[73] |
Moreira, V.G., Garca, B.P., Martn, J.M.B. et al. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation Clin. Chem., 55 (2009),pp. 1958-1966
|
[74] |
Mouliere, F., El Messaoudi, S., Pang, D. et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer Mol. Oncol., 8 (2014),pp. 927-941
|
[75] |
Mouliere, F., Robert, B., Arnau Peyrotte, E. et al. High fragmentation characterizes tumour-derived circulating DNA PLoS One, 6 (2011)
|
[76] |
Ng, E.K., Tsui, N.B., Lau, T.K. et al. mRNA of placental origin is readily detectable in maternal plasma Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4748-4753
|
[77] |
Niu, Q., Li, X., Xia, D. et al. MicroRNA-186 affects the proliferation of tumor cells via yes-associated protein 1 in the occurrence and development of pancreatic cancer Exp. Ther. Med., 14 (2017),pp. 2094-2100
|
[78] |
Old, R.W., Crea, F., Puszyk, W. et al. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome Reprod. Biomed. Online, 15 (2007),pp. 227-235
|
[79] |
Ono, R., Taki, T., Taketani, T. et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23) Cancer Res., 62 (2002),pp. 4075-4080
|
[80] |
Ostrow, K.L., Hoque, M.O., Loyo, M. et al. Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR Clin. Cancer Res., 16 (2010),pp. 3463-3472
|
[81] |
Pan, W., Gu, W., Nagpal, S. et al. Brain tumor mutations detected in cerebral spinal fluid Clin. Chem., 61 (2015),pp. 514-522
|
[82] |
Pfaffeneder, T., Hackner, B., Truss, M. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA Angew. Chem. Int. Ed. Engl., 50 (2011),pp. 7008-7012
|
[83] |
Poon, L.L.M., Leung, T.N., Lau, T.K. et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma Clin. Chem., 48 (2002),pp. 35-41
|
[84] |
Powrozek, T., Krawczyk, P., Kucharczyk, T. et al. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: preliminary report Med. Oncol., 31 (2014),p. 917
|
[85] |
Rodrigues Filho, E.M. Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury J. Neurotrauma, 31 (2014),pp. 1639-1646
|
[86] |
Schtz, E., Fischer, A., Beck, J. et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study PLoS Med., 14 (2017)
|
[87] |
Schwarzenbach, H., Hoon, D.S., Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients Nat. Rev. Cancer, 11 (2011),pp. 426-437
|
[88] |
Smith, Z.D., Meissner, A. DNA methylation: roles in mammalian development Nat. Rev. Genet., 14 (2013),pp. 204-220
|
[89] |
Snyder, T.M., Khush, K.K., Valantine, H.A. et al. Universal noninvasive detection of solid organ transplant rejection Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 6229-6234
|
[90] |
Song, C.X., Szulwach, K.E., Fu, Y. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine Nat. Biotechnol., 29 (2011),pp. 68-72
|
[91] |
Song, C.X., Yin, S., Ma, L. et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages Cell Res., 27 (2017),pp. 1231-1242
|
[92] |
Sriram, K.B., Relan, V., Clarke, B.E. et al. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas BMC Cancer, 12 (2012),p. 428
|
[93] |
Stroun, M., Anker, P., Maurice, P. et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients Oncology, 46 (1989),pp. 318-322
|
[94] |
Stroun, M., Maurice, P., Vasioukhin, V. et al. The origin and mechanism of circulating DNA Ann. N. Y. Acad. Sci., 906 (2000),pp. 161-168
|
[95] |
Sun, K., Jiang, P., Chan, K.C. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. E5503-E5512
|
[96] |
Tahiliani, M., Koh, K.P., Shen, Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 Science, 324 (2009),pp. 930-935
|
[97] |
Tanaka, K., Okamoto, A. Degradation of DNA by bisulfite treatment Bioorg. Med. Chem. Lett., 17 (2007),pp. 1912-1915
|
[98] |
Tefferi, A., Lim, K.H., Levine, R. N. Engl. J. Med., 361 (2009),p. 1117
|
[99] |
Thienpont, B., Steinbacher, J., Zhao, H. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity Nature, 537 (2016),pp. 63-68
|
[100] |
Thierry, A.R. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts Nucleic Acids Res., 38 (2010),pp. 6159-6175
|
[101] |
To, E.W.H. Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma Clin. Cancer Res., 9 (2003),pp. 3254-3259
|
[102] |
Tong, Y.K., Ding, C., Chiu, R.W. et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: theoretical and empirical considerations Clin. Chem., 52 (2006),pp. 2194-2202
|
[103] |
Trejo-Becerril, C., Perez-Cardenas, E., Taja-Chayeb, L. et al. PLoS One, 7 (2012)
|
[104] |
Wan, J.C.M., Massie, C., Garcia-Corbacho, J. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA Nat. Rev. Cancer, 17 (2017),pp. 223-238
|
[105] |
Wang, E., Batey, A., Struble, C. et al. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma Prenat. Diagn., 33 (2013),pp. 662-666
|
[106] |
Wang, Y. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 9704-9709
|
[107] |
Wang, Y., Chen, M., Xiao, N. et al. Gene, 590 (2016),pp. 142-148
|
[108] |
Wen, L., Li, J., Guo, H. et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients Cell Res., 25 (2015),p. 1376
|
[109] |
Wu, H., D'Alessio, A.C., Ito, S. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells Genes Dev., 25 (2011),pp. 679-684
|
[110] |
Wu, X., Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond Nat. Rev. Genet., 18 (2017),pp. 517-534
|
[111] |
Xu, R.H., Wei, W., Krawczyk, M. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma Nat. Mater., 16 (2017),pp. 1155-1161
|
[112] |
Yang, H., Liu, Y., Bai, F. et al. Oncogene, 32 (2013),pp. 663-669
|
[113] |
Zimmermann, B., Hill, M., Gemelos, G. et al. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci Prenat. Diagn., 32 (2012),pp. 1233-1241
|