5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 3
Mar.  2018
Turn off MathJax
Article Contents

Overexpressing dominant-negative FGFR2-IIIb impedes lung branching morphogenesis in pigs

doi: 10.1016/j.jgg.2018.02.002
More Information
  • Corresponding author: E-mail address: hyyang@njmu.edu.cn (Haiyuan Yang); E-mail address: daiyifan@njmu.edu.cn (Yifan Dai)
  • Received Date: 2017-11-17
  • Accepted Date: 2018-02-02
  • Rev Recd Date: 2018-01-16
  • Available Online: 2018-02-14
  • Publish Date: 2018-03-20
  • Genetic studies with mouse models have shown that fibroblast growth factor receptor 2-IIIb (FGFR2-IIIb) plays crucial roles in lung development and differentiation. To evaluate the effect of FGFR2-IIIb in pig lung development, we employed somatic cell nuclear transfer (SCNT) technology to generate transgenic pig fetuses overexpressing the transmembrane (dnFGFR2-IIIb-Tm) and soluble (dnFGFR2-IIIb-HFc) forms of the dominant-negative human FGFR2-IIIb driven by the human surfactant protein C (SP-C) promoter, which was specifically expressed in lung epithelia. Eight dnFGFR2-IIIb-Tm transgenic and twelve dnFGFR2-IIIb-HFc transgenic pig fetuses were collected from three and two recipient sows, respectively. Repression of FGFR2-IIIb in lung epithelia resulted in smaller lobes and retardation of alveolarization in both forms of dnFGFR2-IIIb transgenic fetuses. Moreover, the dnFGFR2-IIIb-HFc transgenic ones showed more deterioration in lung development. Our results demonstrate that disruption of FGFR2-IIIb signaling in the epithelium impedes normal branching and alveolarization in pig lungs, which is less severe than the results observed in transgenic mice. The dnFGFR2-IIIb transgenic pig is a good model for the studies of blastocyst complementation as well as the mechanisms of lung development and organogenesis.
  • This author contributed equally to this work.
  • loading
  • [1]
    Abler, L.L., Mansour, S.L., Sun, X. Dev. Dynam., 238 (2009),pp. 1999-2013
    [2]
    Arman, E., Haffner-Krausz, R., Chen, Y. et al. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 5082-5087
    [3]
    Arman, E., Haffner-Krausz, R., Gorivodsky, M. et al. Proc. Natl. Acad. Sci. U. S. A., 96 (1999),pp. 11895-11899
    [4]
    Bellusci, S., Grindley, J., Emoto, H. et al. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung Development, 124 (1997),pp. 4867-4878
    [5]
    Cardoso, W.V., Itoh, A., Nogawa, H. et al. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium Dev. Dynam., 208 (1997),pp. 398-405
    [6]
    Celli, G., LaRochelle, W.J., Mackem, S. et al. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning EMBO J., 17 (1998),pp. 1642-1655
    [7]
    Cooper, D.K., Ekser, B., Burlak, C. et al. Clinical lung xenotransplantation ‒ what donor genetic modifications may be necessary? Xenotransplantation, 19 (2012),pp. 144-158
    [8]
    De Moerlooze, L., Spencer-Dene, B., Revest, J.M. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis Development, 127 (2000),pp. 483-492
    [9]
    El Agha, E., Herold, S., Al Alam, D. et al. Development, 141 (2014),pp. 296-306
    [10]
    Francavilla, C., Rigbolt, K.T., Emdal, K.B. et al. Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs Mol. Cell, 51 (2013),pp. 707-722
    [11]
    Gao, R.W., Kong, X.Y., Zhu, X.X. et al. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells In Vitro Cell. Dev. Biol. Anim., 51 (2015),pp. 479-487
    [12]
    Glasser, S.W., Korfhagen, T.R., Wert, S.E. et al. Genetic element from human surfactant protein SP-C gene confers bronchiolar-alveolar cell specificity in transgenic mice Am. J. Physiol., 261 (1991),pp. L349-L356
    [13]
    Harmer, N.J., Ilag, L.L., Mulloy, B. et al. Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex J. Mol. Biol., 339 (2004),pp. 821-834
    [14]
    Kobayashi, T., Yamaguchi, T., Hamanaka, S. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells Cell, 142 (2010),pp. 787-799
    [15]
    Laird, C., Burdorf, L., Lung xenotransplantation: a review Curr. Opin. Organ Transplant., 21 (2016),pp. 272-278
    [16]
    Lazzaro, D., Price, M., de Felice, M. et al. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain Development, 113 (1991),pp. 1093-1104
    [17]
    Ma, L., Cai, X.J., Wang, H.H. et al. Laparoscopic colonic anastomosis using a degradable stent in a porcine model World J. Gastroenterol., 22 (2016),pp. 4707-4715
    [18]
    Marszalek, A., Daa, T., Kashima, K. et al. Quantitative immunohistochemical analysis of the expression of CD31 during lung development in the rat Cells Tissues Organs, 169 (2001),pp. 49-54
    [19]
    Matsunari, H., Nagashima, H., Watanabe, M. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 4557-4562
    [20]
    Min, H., Danilenko, D.M., Scully, S.A. et al. Genes Dev., 12 (1998),pp. 3156-3161
    [21]
    Morrisey, E.E., Hogan, B.L. Preparing for the first breath: genetic and cellular mechanisms in lung development Dev. Cell, 18 (2010),pp. 8-23
    [22]
    Ohuchi, H., Hori, Y., Yamasaki, M. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development Biochem. Biophys. Res. Commun., 277 (2000),pp. 643-649
    [23]
    Omara, M., Okamoto, T., Arafat, A. et al. Lung transplantation in patients who have undergone prior cardiothoracic procedures J. Heart Lung Transplant., 35 (2016),pp. 1462-1470
    [24]
    Ostrovsky, O., Berman, B., Gallagher, J. et al. Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes J. Biol. Chem., 277 (2002),pp. 2444-2453
    [25]
    Park, W.Y., Miranda, B., Lebeche, D. et al. FGF-10 is a chemotactic factor for distal epithelial buds during lung development Dev. Biol., 201 (1998),pp. 125-134
    [26]
    Pellegrini, L., Burke, D.F., von Delft, F. et al. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin Nature, 407 (2000),pp. 1029-1034
    [27]
    Peters, K., Werner, S., Liao, X. et al. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung EMBO J., 13 (1994),pp. 3296-3301
    [28]
    Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res., 29 (2001),p. e45
    [29]
    Que, J., Wilm, B., Hasegawa, H. et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 16626-16630
    [30]
    Rawlins, E.L., Ostrowski, L.E., Randell, S.H. et al. Lung development and repair: contribution of the ciliated lineage Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 410-417
    [31]
    Sahara, H., Watanabe, H., Pomposelli, T. et al. Lung xenotransplantation Curr. Opin. Organ Transplant., 22 (2017),pp. 541-548
    [32]
    Sekine, K., Ohuchi, H., Fujiwara, M. et al. Fgf10 is essential for limb and lung formation Nat. Genet., 21 (1999),pp. 138-141
    [33]
    Snoeck, H.W. Modeling human lung development and disease using pluripotent stem cells Development, 142 (2015),pp. 13-16
    [34]
    Sun, R., Zhou, Q., Ye, X. et al. A change in the number of CCSP(pos)/SPC(pos) cells in mouse lung during development, growth, and repair Respir. Investig., 51 (2013),pp. 229-240
    [35]
    Treutlein, B., Brownfield, D.G., Wu, A.R. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq Nature, 509 (2014),pp. 371-375
    [36]
    Xu, X., Weinstein, M., Li, C. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction Development, 125 (1998),pp. 753-765
    [37]
    Zhang, W., Wang, G., Wang, Y. et al. Generation of complement protein C3 deficient pigs by CRISPR/Cas9-mediated gene targeting Sci. Rep., 7 (2017),p. 5009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return