5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 1
Jan.  2018
Turn off MathJax
Article Contents

Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment

doi: 10.1016/j.jgg.2018.01.003
More Information
  • Corresponding author: E-mail address: scampo@unime.it (Salvatore Campo)
  • Received Date: 2017-10-19
  • Accepted Date: 2018-01-15
  • Rev Recd Date: 2018-01-12
  • Available Online: 2018-02-01
  • Publish Date: 2018-01-20
  • In eukaryotic cells, protein synthesis is a complex and multi-step process that has several mechanisms to start the translation including cap-dependent and cap-independent initiation. The translation control of eukaryotic gene expression occurs principally at the initiation step. In this context, it is critical that the eukaryotic translation initiation factor eIF4E bind to the 7-methylguanosine (m7G) cap present at the 5′-UTRs of most eukaryotic mRNAs. Combined with other initiation factors, eIF4E mediates the mRNA recruitment on ribosomes to start the translation. Moreover, the eIF4E nuclear bodies are involved in the export of specific mRNAs from the nucleus to the cytoplasm. In this review, we focus on the eIF4E structure and its physiological functions, and describe the role of eIF4E in cancer development and progression and the current therapeutic strategies to target eIF4E.
  • loading
  • [1]
    Aitken, C.E., Lorsch, J.R. A mechanistic overview of translation initiation in eukaryotes Nat. Struct. Mol. Biol., 19 (2012),pp. 568-576
    [2]
    Andrieu, C., Taieb, D., Baylot, V. et al. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E Oncogene, 29 (2010),pp. 1883-1896
    [3]
    Armengol, G., Rojo, F., Castellvi, J. et al. 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications Cancer Res., 67 (2007),pp. 7551-7555
    [4]
    Ashworth, A., Lord, C.J., Reis-Filho, J.S. Genetic interactions in cancer progression and treatment Cell, 145 (2011),pp. 30-38
    [5]
    Askew, D.S., Ashmun, R.A., Simmons, B.C. et al. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis Oncogene, 6 (1991),pp. 1915-1922
    [6]
    Assouline, S., Culjkovic, B., Cocolakis, E. et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof of principal clinical trial with ribavirin Blood, 114 (2009),pp. 257-260
    [7]
    Assouline, S., Culjkovic-Kraljacic, B., Borden, K.L.B. A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E Haematologica, 100 (2015),pp. e7-e9
    [8]
    Avdulov, S., Li, S., Michalek, V. et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells Cancer Cell, 5 (2004),pp. 553-563
    [9]
    Berthelot, K., Muldoon, M., Rajkowitsch, L. et al. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast Mol. Microbiol., 51 (2004),pp. 987-1001
    [10]
    Bitterman, P.B., Polunovsky, V.A. eIF4E-mediated translational control of cancer incidence Biochim. Biophys. Acta, 1849 (2015),pp. 774-780
    [11]
    Borden, K.L.B. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies Mol. Cell. Biol., 22 (2002),pp. 5259-5269
    [12]
    Borden, K.L.B. The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions Translation, 4 (2016)
    [13]
    Browning, K.S., Lax, S.R., Ravel, J.M. Identification of two messenger RNA cap binding proteins in wheat germ. Evidence that the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F are antigenically distinct polypeptides J. Biol. Chem., 262 (1987),pp. 11228-11232
    [14]
    Buchan, J.R. mRNP granules. Assembly, function, and connections with the disease RNA Biol., 11 (2014),pp. 1019-1030
    [15]
    Calvo, S.E., Pagliarini, D.J., Mootha, V.K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 7507-7512
    [16]
    Caron, E., Ghosh, S., Matsuoka, Y. et al. A comprehensive map of the mTOR signaling network Mol. Syst. Biol., 6 (2010),p. 453
    [17]
    Chambard, J.C., Lefloch, R., Pouysséqur, J. et al. ERK implication in cell cycle regulation Biochim. Biophys. Acta, 1773 (2007),pp. 1299-1310
    [18]
    Chuang, R.Y., Weaver, P.L., Liu, Z. et al. Requirement of the DEAD-box protein ded1p for messenger RNA translation Science, 275 (1997),pp. 1468-1471
    [19]
    Cigan, A.M., Feng, L., Donahue, T.F. tRNAi(met) functions in directing the scanning ribosome to the start site of translation Science, 242 (1988),pp. 93-97
    [20]
    Cohen, N., Sharma, M., Kentsis, A. et al. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA EMBO J., 20 (2001),pp. 4547-4559
    [21]
    Crew, J.P., Fuggle, S., Bicknell, R. et al. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression Br. J. Cancer, 82 (2000),pp. 161-166
    [22]
    Cuesta, R., Xi, Q., Schneider, R.J. Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F EMBO J., 19 (2000),pp. 3465-3474
    [23]
    Culjkovic, B., Borden, K.L. Understanding and targeting the eukaryotic translation initiation factor eIF4E in head and neck cancer J. Oncol., 2009 (2009),p. 981679
    [24]
    Culjkovic, B., Tan, K., Orolicki, S. et al. The eIF4E RNA regulon promotes the Akt signaling pathway J. Cell Biol., 181 (2008),pp. 51-63
    [25]
    Culjkovic, B., Topisirovic, I., Borden, K.L.B. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E Cell Cycle, 6 (2007),pp. 65-69
    [26]
    Culjkovic, B., Topisirovic, I., Skrabanek, L. et al. eIF4E is a central node of an RNA regulon that governs cellular proliferation J. Cell Biol., 175 (2006),pp. 415-426
    [27]
    Culjkovic, B., Topisirovic, I., Skrabanek, L. et al. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR J. Cell Biol., 169 (2005),pp. 245-256
    [28]
    Culjkovic-Kraljacic, B., Baguet, A., Volpon, L. et al. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation Cell Rep., 2 (2012),pp. 207-215
    [29]
    Culjkovic-Kraljacic, B., Borden, K.L.B. Aiding and abetting cancer: mRNA export and the nuclear pore Trends Cell Biol., 23 (2013),pp. 328-335
    [30]
    De Benedetti, A., Graff, J.R. eIF4E expression and its role in malignancies and metastases Oncogene, 23 (2004),pp. 3189-3199
    [31]
    DeNicola, G.M., Karreth, F.A., Humpton, T.J. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis Nature, 475 (2011),pp. 106-109
    [32]
    Dostie, J., Lejbkowicz, F., Sonenberg, N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalized with splicing factors in speckles J. Cell Biol., 148 (2000),pp. 239-246
    [33]
    Duffy, A.G., Makarova-Rusher, O.V., Ulahannan, S.V. et al. Modulation of tumor eIF4E by antisense inhibition: a phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer Int. J. Cancer, 139 (2016),pp. 1648-1657
    [34]
    Elfakess, R., Sinvani, H., Haimov, O. et al. Unique translation initiation of mRNAs-containing TISU element Nucleic Acid Res., 39 (2011),pp. 7598-7609
    [35]
    Elgendy, M., Sheridan, C., Brumatti, G. et al. Oncogene Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival Mol. Cell, 42 (2011),pp. 23-35
    [36]
    El-Hashemite, N., Walker, V., Zhang, H. et al. Cancer Res., 63 (2003),pp. 5173-5177
    [37]
    Evan, G.I., Wyllie, A.H., Gilbert, C.S. et al. Induction of apoptosis in fibroblasts by c-myc protein Cell, 69 (1992),pp. 119-128
    [38]
    Fan, S., Ramalingam, S.S., Kauh, J. et al. Phosphorylated eukaryotic translation initiation factor 4E (eIF4E) is elevated in human cancer tissues Cancer Biol. Ther., 8 (2009),pp. 1463-1469
    [39]
    Feoktistova, K., Tuvshintogs, E., Do, A. et al. Human eIF4E promotes mRNA restructuring by stimulating eIF4E helicase activity Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 13339-13344
    [40]
    Furic, L., Rong, L., Larsson, O. et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 14134-14139
    [41]
    Gao, B., Roux, P.P. Translational control by oncogenic signal pathway Biochim. Biophys. Acta, 1849 (2015),pp. 753-765
    [42]
    Gingras, A.C., Raught, B., Sonenberg, N. Regulation of translation initiation by FRAP/mTOR Genes Dev., 15 (2001),pp. 807-826
    [43]
    Gingras, A.C., Raught, B., Sonenberg, N. mTOR signaling to translation Curr. Top. Microbiol. Immunol., 279 (2004),pp. 169-197
    [44]
    Graff, J.R., Konicek, B.W., Vincent, T.M. et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity J. Clin. Invest., 117 (2007),pp. 2638-2648
    [45]
    Grzmil, M., Huber, R.M., Hess, D. et al. MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas J. Clin. Invest., 124 (2014),pp. 742-754
    [46]
    Grzmil, M., , Lino, M.M., Merlo, A. et al. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma Cancer Res., 71 (2011),pp. 2392-2402
    [47]
    Hay, N., Sonenberg, N. Upstream and downstream of mTOR Genes Dev., 18 (2004),pp. 1926-1945
    [48]
    Heesom, K.J., Gampel, A., Mellor, H. et al. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1) Curr. Biol., 11 (2001),pp. 1374-1379
    [49]
    Hilliker, A., Gao, Z., Jankowsky, E. et al. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex Mol. Cell, 43 (2011),pp. 962-972
    [50]
    Hinnebusch, A.G. The scanning mechanism of eukaryotic translation initiation Annu. Rev. Biochem., 83 (2014),pp. 779-812
    [51]
    Jackson, R.J. The current status of vertebrate cellular mRNA IRESs Cold Spring Harb. Perspect. Biol., 5 (2013),p. a011569
    [52]
    Jackson, R.J., Hellen, C.U., Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 113-127
    [53]
    Jankowska-Anyszka, M., Lamphear, B.J., Aamodt, E.J. et al. J. Biol. Chem., 273 (1998),pp. 10538-10542
    [54]
    Joshi, B., Cameron, A., Jagus, R. Characterization of mammalian eIF4E-family members Eur. J. Biochem., 271 (2004),pp. 2189-2203
    [55]
    Joshi, B., Lee, K., Maeder, D. et al. Phylogenetic analysis of eIF4E-family members BMC Evol. Biol., 5 (2005),p. 48
    [56]
    Karaki, S., Andrieu, C., Ziouziou, H. et al. The eukaryotic translation initiation factor 4E (eIF4E) as a therapeutic target for cancer Adv. Protein Chem. Struct. Biol., 101 (2015),pp. 1-26
    [57]
    Kaye, N.M., Emmett, K.J., Merrick, W.C. et al. Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap J. Biol. Chem., 284 (2009),pp. 17742-17750
    [58]
    Keene, J.D. RNA regulons: coordination of post-transcriptional events Nat. Rev. Genet., 8 (2007),pp. 533-543
    [59]
    Kentsis, A., Dwyer, E.C., Perez, J.M. et al. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E J. Mol. Biol., 312 (2001),pp. 609-623
    [60]
    Kentsis, A., Gordon, R.E., Borden, K.L.B. Control of biochemical reactions through supramolecular RING domain self-assembly Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 15404-15409
    [61]
    Kentsis, A., Gordon, R.E., Borden, K.L.B. Self-assembly properties of a model RING domain Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 667-672
    [62]
    Kevil, C.G., De Benedetti, A., Payne, D.K. et al. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis Int. J. Cancer, 65 (1996),pp. 785-790
    [63]
    Kimball, S.R. Regulation of translation initiation by amino acids in eukaryotic cells Prog. Mol. Subcell. Biol., 26 (2001),pp. 155-184
    [64]
    Köllermann, J., Helpap, B. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor Flk-1 in benign, premalignant, and malignant prostate tissue Am. J. Clin. Pathol., 116 (2001),pp. 115-121
    [65]
    Komar, A.A., Mazumder, B., Merrick, W.C. A new framework for understanding IRES-mediated translation Gene, 502 (2012),pp. 75-86
    [66]
    Kosciuczuk, E.M., Saleiro, D., Kroczynka, B. et al. Blood, 21 (2016),pp. 404-410
    [67]
    Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation Gene, 299 (2002),pp. 1-34
    [68]
    Kubacka, D., Miguel, R.N., Minshall, N. et al. Distinct features of cap binding by eIF4E1b proteins J. Mol. Biol., 427 (2015),pp. 387-405
    [69]
    Lai, H.K., Borden, K.L.B. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA Oncogene, 19 (2000),pp. 1623-1634
    [70]
    Laplante, M., Sabatini, D.M. mTOR signaling in growth control and disease Cell, 149 (2012),pp. 274-293
    [71]
    Lazaris-Karatzas, A., Montine, K.S., Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap Nature, 345 (1990),pp. 544-547
    [72]
    Lee, K.L., Bar-Sagi, D. Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells Cancer Cell, 18 (2010),pp. 448-458
    [73]
    Lejbkowicz, F., Goyer, C., Darveau, A. et al. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus Proc. Nat. Acad. Sci. U. S. A., 89 (1992),pp. 9612-9616
    [74]
    Li, S., Takasu, T., Perlman, D.M. et al. Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release J. Biol. Chem., 278 (2003),pp. 3015-3022
    [75]
    Lim, S.C. Role of COX-2, VEGF and cyclin D1 in mammary infiltrating duct carcinoma Oncol. Rep., 10 (2003),pp. 1241-1249
    [76]
    Lim, S., Saw, T.Y., Zhang, M. et al. Targeting of the MNK-function axis in blast crisis chronic leukemia inhibits leukemia stem cell function Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E2298-E2307
    [77]
    Liu, F., Wang, X., Li, J. et al. miR-34c-3p functions as a tumor suppressor by inhibiting eIF4E expression in non-small cell lung cancer Cell Prolif., 48 (2015),pp. 582-592
    [78]
    Liu, W., Jankowska-Anyszka, M., Piecyk, K. et al. Structural basis for nematode eIF4E binding an m(2,2,7)G-Cap and its implications for translation initiation Nucleic Acids Res., 39 (2011),pp. 8820-8832
    [79]
    Lowe, S.W., Cepero, E., Evan, G. Intrinsic tumour suppression Nature, 432 (2004),pp. 307-315
    [80]
    Lu, Y., Lee, B.H., King, R.W. et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis Science, 348 (2015),p. 1250834
    [81]
    Maimon, A., Moglievsky, M., Shilo, A. et al. Mnk2 alternative splicing modulates the p38-MAPK pathway and impacts Ras-induced transformation Cell Rep., 7 (2014),pp. 501-513
    [82]
    Mamane, Y., Petroulakis, E., Martineau, Y. et al. Epigenetic activation of a subset of mRNAs by EIF4E explains its effects on cell proliferation PLoS One, 2 (2007),p. e242
    [83]
    Marcotrigiano, J., Gingras, A.C., Sonenberg, N. et al. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP Cell, 89 (1997),pp. 951-961
    [84]
    Marcotrigiano, J., Gingras, A.C., Sonenberg, N. et al. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G Mol. Cell, 3 (1999),pp. 707-716
    [85]
    Marintchev, A. Roles of helicases in translation initiation: a mechanist view Biochim. Biophys. Acta, 1829 (2013),pp. 799-809
    [86]
    Marintchev, A., Edmonds, K.A., Marintcheva, B. et al. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation Cell, 136 (2009),pp. 447-460
    [87]
    Marintchev, A., Wagner, G. Translation initiation: structures, mechanisms and evolution Q. Rev. Biophys., 37 (2004),pp. 197-284
    [88]
    Martin, F., Barends, S., Jaeger, S. et al. Cap-assisted internal initiation of translation of histone H4 Mol. Cell, 41 (2011),pp. 197-209
    [89]
    Martineau, Y., Azar, R., Bousquet, C. et al. Anti-oncogenic potential of the eIF4E-binding proteins Oncogene, 32 (2013),pp. 671-677
    [90]
    Matsuo, H., Li, H., McGuire, A.M. et al. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein Nat. Struct. Biol., 4 (1997),pp. 717-724
    [91]
    Meijer, H.A., Thomas, A.A.M. Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA Biochem. J., 367 (2002),pp. 1-11
    [92]
    Meric-Bernstam, F. Translation initiation factor 4E (eIF4E): prognostic marker and potential therapeutic target Ann. Surg. Oncol., 15 (2008),pp. 2996-2997
    [93]
    Meyuhas, O., Kahan, T. The race to decipher the top secrets of TOP mRNAs Biochim. Biophys. Acta, 1849 (2015),pp. 801-811
    [94]
    Michon, T., Estevez, Y., Walter, J. et al. The potyviral virus genome-linked protein VPg forms a ternary complex with eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue FEBS J., 273 (2006),pp. 1312-1322
    [95]
    Monzingo, A.F., Dhaliwal, S., Dutt-Chaudhuri, A. et al. The structure of eukaryotic translation initiation factor-4E from wheat reveals a novel disulfide bond Plant Physiol., 143 (2007),pp. 1504-1518
    [96]
    Morris, D.R., Geballe, A.P. Upstream open reading frames as regulators of mRNA translation Mol. Cell. Biol., 20 (2000),pp. 8635-8642
    [97]
    Murata, T., Shimotohno, K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E J. Biol. Chem., 281 (2006),pp. 20788-20800
    [98]
    Murphy, D.J., Junttila, M.R., Pouyet, L. et al. Cancer Cell, 14 (2008),pp. 447-457
    [99]
    Nasr, Z., Pelletier, J. Tumor progression and metastasis: role of translational deregulation Anticancer Res., 32 (2012),pp. 3077-3084
    [100]
    Nasr, Z., Robert, F., , Muller, W.J. et al. eIF4F suppression in breast cancer affects maintenance and progression Oncogene, 32 (2012),pp. 861-871
    [101]
    Oberer, M., Marintchev, A., Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G Genes Dev., 19 (2005),pp. 2212-2223
    [102]
    Osborne, M.J., Borden, K.L.B. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less travelled Immunol. Rev., 263 (2015),pp. 210-223
    [103]
    Othumpangat, S., Kashon, M., Joseph, P. Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride J. Biol. Chem., 280 (2005),pp. 25162-25169
    [104]
    Özeş, A.R., Feoktistova, K., Avanzino, B.C. et al. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B J. Mol. Biol., 412 (2011),pp. 674-687
    [105]
    Papadopoulos, E., Jenni, S., Kabha, E. et al. Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. E3187-E3195
    [106]
    Park, E.H., Walker, S.E., Lee, J.M. et al. EMBO J., 30 (2011),pp. 302-316
    [107]
    Parker, R., Sheth, U. P bodies and the control of the mRNA translation and degradation Mol. Cell, 25 (2007),pp. 635-646
    [108]
    Parsyan, A., Svitkin, Y., Shahbazian, D. et al. mRNA helicases: the tacticians of translational control Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 235-245
    [109]
    Pisareva, V.P., Pisarev, A.V., Komar, A.A. et al. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DexH-box protein DHX29 Cell, 135 (2008),pp. 1237-1250
    [110]
    Polunovsky, V.A., Rosenwald, I.B., Tan, A.T. et al. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc Mol. Cell. Biol., 16 (1996),pp. 6573-6581
    [111]
    Pópulo, H., Lopes, J.M., Soares, P. The mTOR signalling pathway in human cancer Int. J. Mol. Sci., 13 (2012),pp. 1886-1918
    [112]
    Pöyry, T.A.A., Kaminski, A., Jackson, R.J. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev., 18 (2004),pp. 62-75
    [113]
    Prescott, D.M. Regulation of cell reproduction Cancer Res., 28 (1968),pp. 1815-1820
    [114]
    Pyronnet, S., Sonenberg, N. Cell-cycle-dependent translational control Curr. Opin. Genet. Dev., 11 (2001),pp. 13-18
    [115]
    Qin, X., Jiang, B., Zhang, Y. 4E-BP1, a multifactor regulated multifunctional protein Cell Cycle, 15 (2016),pp. 781-786
    [116]
    Raingeaud, J., Gupta, S., Rogers, J.S. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine J. Biol. Chem., 270 (1995),pp. 7420-7426
    [117]
    Raught, B., Gingras, A.C.
    [118]
    Renan, M.J. How many mutations are required for tumorigenesis? Implications from human cancer data Mol. Carcinog., 7 (1993),pp. 139-146
    [119]
    Richter, J.D., Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins Nature, 433 (2005),pp. 477-480
    [120]
    Rhoads, R.E. eIF4E: new family members, new binding partners, new roles J. Biol. Chem., 284 (2009),pp. 16711-16715
    [121]
    Robichaud, N., del Rincon, S.V., Huor, B. et al. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3 Oncogene, 34 (2014),pp. 2032-2042
    [122]
    , Richter, N.J., Lima, W.F., Merrick, W.C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F J. Biol. Chem., 276 (2001),pp. 30914-30922
    [123]
    Rojo, F., Najera, L., Lirola, J. et al. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis Clin. Cancer Res., 13 (2007),pp. 81-89
    [124]
    Rom, E., Kim, H.C., Gingras, A.C. et al. Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein J. Biol. Chem., 273 (1998),pp. 13104-13109
    [125]
    Rosenwald, I.B., Lazaris-Karatzas, A., Sonenberg, N. et al. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E Mol. Cell. Biol., 13 (1993),pp. 7358-7363
    [126]
    Roudet-Tavert, G., Michon, T., Walter, J. et al. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro J. Gen. Virol., 88 (2007),pp. 1029-1033
    [127]
    Rousseau, D., Kaspar, R., Rosenwald, I. et al. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 1065-1070
    [128]
    Rozovsky, N., Butterworth, A.C., Moore, M.J. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H RNA, 14 (2008),pp. 2136-2148
    [129]
    Ruud, K.A., Kuhlow, C., Goss, D.J. et al. J. Biol. Chem., 273 (1998),pp. 10325-10330
    [130]
    Roux, P.P., Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions Microbiol. Mol. Biol. Rev., 68 (2004),pp. 320-344
    [131]
    Sayin, V.I., Ibrahim, M.X., Larsson, E. et al. Antioxidants accelerate lung cancer progression in mice Sci. Transl. Med., 6 (2014),p. 221ra15
    [132]
    Scheper, G.C., Morrice, N.A., Kleijn, M. et al. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells Mol. Cell. Biol., 21 (2001),pp. 743-754
    [133]
    Scheper, G.C., Proud, C.G. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem., 269 (2002),pp. 5350-5359
    [134]
    Scheper, G.C., van Kollenburg, B., Hu, J. et al. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA J. Biol. Chem., 277 (2002),pp. 3303-3309
    [135]
    Seker, H., Rubbi, C., Linke, S.P. et al. UV-C-induced DNA damage leads to p53-dependent nuclear trafficking of PML Oncogene, 22 (2003),pp. 1620-1628
    [136]
    Shenberger, J.S., Myers, J.L., Zimmer, S.G. et al. Hyperoxia alters the expression and phosphorylation of multiple factor regulating translation initiation Am. J. Physiol. Lung Cell. Mol. Physiol., 288 (2005),pp. L442-L449
    [137]
    Sheng, X., Zhu, Y., Xiao, Z. et al. Antiviral drug ribavirin targets thyroid cancer cells by inhibiting the eIF4E-β-catenin axis Am. J. Med. Sci., 354 (2017),pp. 182-189
    [138]
    Siddiqui, N., Borden, K.L.B. mRNA export and cancer Wiley Interdiscip. Rev. RNA, 3 (2012),pp. 13-25
    [139]
    Sonenberg, N., Rupprecht, K.M., Hecht, S.M. et al. Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA Proc. Natl. Acad. Sci. U. S. A., 76 (1979),pp. 4345-4349
    [140]
    Sonenberg, N., Hinnesbusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets Cell, 136 (2009),pp. 731-745
    [141]
    Swatek, K.N., Komander, D. Ubiquitin modifications Cell Res., 26 (2016),pp. 399-422
    [142]
    Szatrowsky, T.P., Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells Cancer Res., 51 (1991),pp. 794-798
    [143]
    Tan, A., Bitterman, P., Sonenberg, N. et al. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1 Oncogene, 19 (2000),pp. 1437-1447
    [144]
    Tan, N.G.S., Ardley, H.C., Scott, G.B. et al. Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP FEBS Lett., 554 (2003),pp. 501-504
    [145]
    Thompson, S.R. Tricks an IRES uses to enslave ribosomes Trends Microbiol., 20 (2012),pp. 558-566
    [146]
    Thoreen, C.C. The molecular basis of mTORC1-regulated translation Biochem. Soc. Trans., 45 (2017),pp. 213-221
    [147]
    Tomoo, K., Shen, X., Okabe, K. et al. Crystal structures of 7-methylguanosine 5′-triphosphate (m(7)GTP)-and P(1)-7-methylguanosine-P(3)-adenosine-5′,5′-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region Biochem. J., 362 (2002),pp. 539-544
    [148]
    Topisirovic, I., Capili, A.D., Borden, K.L.B. Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner Mol. Cell. Biol., 22 (2002),pp. 6183-6198
    [149]
    Topisirovic, I., Culjkovic, B., Cohen, N. et al. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth EMBO J., 22 (2003),pp. 689-703
    [150]
    Topisirovic, I., Guzman, M.L., McConell, M.J. et al. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis Mol. Cell. Biol., 23 (2003),pp. 8992-9002
    [151]
    Topisirovic, I., Ruiz-Gutierrez, M., Borden, K.L.B. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities Cancer Res., 64 (2004),pp. 8639-8642
    [152]
    Topisirovic, I., Kentsis, A., Perez, J.M. et al. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels Mol. Cell. Biol., 25 (2005),pp. 1100-1112
    [153]
    Topisirovic, I., Siddiqui, N., Lapointe, V.L. et al. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP EMBO J., 28 (2009),pp. 1087-1098
    [154]
    Trachootham, D., Zhou, Y., Zhang, H. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate Cancer Cell, 10 (2006),pp. 241-252
    [155]
    Truitt, M.L., Conn, C.S., Shi, Z. et al. Differential requirements for eIF4E dose in normal development and cancer Cell, 162 (2015),pp. 59-71
    [156]
    Tuveson, D.A., Shaw, A.T., Willis, N.A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects Cancer Cell, 5 (2004),pp. 375-387
    [157]
    Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H. et al. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development Mol. Cell. Biol., 24 (2004),pp. 6539-6549
    [158]
    Vermeulen, K., Van Bockstaele, D.R., Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer Cell Prolif., 36 (2003),pp. 131-149
    [159]
    Volpon, L., Culjkovic-Kraljacic, B., Osborne, M.J. et al. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 5263-5268
    [160]
    Volpon, L., Culjkovic-Kraljacic, B., Sohn, H.S. et al. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery RNA, 23 (2017),pp. 927-937
    [161]
    Wan, J., Shi, F., Xu, Z. et al. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells Int. J. Oncol., 47 (2015),pp. 2217-2225
    [162]
    Wang, R., Geng, J., Wang, J.H. et al. Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma Lung Cancer, 66 (2009),pp. 237-244
    [163]
    Wang, X., Beugnet, A., Murakami, M. et al. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins Mol. Cell. Biol., 25 (2005),pp. 2558-2572
    [164]
    Wang, X.Q., Rothnagel, J.A. 5′-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation Nucleic Acids Res., 32 (2004),pp. 1382-1391
    [165]
    Weber, G.F., Ashkar, S., Glimcher, M.J. et al. Receptor-ligand interaction between CD44 and osteopontin (Eta-1) Science, 271 (1996),pp. 509-512
    [166]
    Weber, G.F., Bronson, R.T., Ilagan, J. et al. Cancer Res., 62 (2002),pp. 2281-2286
    [167]
    Weinberg, F., Hamanaka, R., Wheaton, W.W. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 8788-8793
    [168]
    Wells, S.E., Hillner, P.E., Vale, R.D. et al. Circularization of mRNA by eukaryotic translation initiation factors Mol. Cell, 2 (1998),pp. 135-140
    [169]
    Wendel, H.G., De Stanchina, E., Fridman, J.S. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy Nature, 428 (2004),pp. 332-337
    [170]
    Wendel, H.G., Silva, R.L., Malina, A. et al. Dissecting eIF4E action in tumorigenesis Genes Dev., 21 (2007),pp. 3232-3237
    [171]
    Xu, T., Zong, Y., Peng, L. et al. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis OncoTargets Ther., 9 (2016),pp. 815-822
    [172]
    Yanagiya, A., Svitkin, Y.V., Shibata, S. et al. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap Mol. Cell. Biol., 29 (2009),pp. 1661-1669
    [173]
    Yang, S.X., Hewitt, S.M., Steinberg, S.M. et al. Expression levels of eIF4E, VEGF and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray Oncol. Rep., 17 (2007),pp. 281-287
    [174]
    Yang, X., Zang, J., Pan, X. et al. miR-503 inhibits proliferation making human hepatocellular carcinoma cells susceptible to 5-fluorouracil by targeting EIF4E Oncol. Rep., 37 (2017),pp. 563-570
    [175]
    Yedavalli, V.S., Jeang, K.T. Trimethylguanosine capping selectively promotes expression of Rev-dependent HIV-1 RNAs Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 14787-14792
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (13) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return