[1] |
Bader, B.L., Smyth, N., Nedbal, S. et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice Mol. Cell. Biol., 25 (2005),pp. 6846-6856
|
[2] |
Berghmans, S., Murphey, R.D., Wienholds, E. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 407-412
|
[3] |
Bose, K., Nischt, R., Page, A. et al. Loss of nidogen-1 and -2 results in syndactyly and changes in limb development J. Biol. Chem., 281 (2006),pp. 39620-39629
|
[4] |
Carlin, B., Jaffe, R., Bender, B. et al. Entactin, a novel basal lamina-associated sulfated glycoprotein J. Biol. Chem., 256 (1981),pp. 5209-5214
|
[5] |
De Souza, A.T., Dai, X., Spencer, A.G. et al. Nucleic Acids Res., 34 (2006),pp. 4486-4494
|
[6] |
Fleischmajer, R., Schechter, A., Bruns, M. et al. J. Invest. Dermatol., 105 (1995),pp. 597-601
|
[7] |
Fox, J.W., Mayer, U., Nischt, R. et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV EMBO J., 10 (1991),pp. 3137-3146
|
[8] |
Gao, Y.B., Zhang, Y., Zhang, D. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 2275-2280
|
[9] |
Kok, F.O., Shin, M., Ni, C.W. et al. Reverse genetic screening reveals poor correlation between morpholino-induced and Mutant phenotypes in zebrafish Dev. Cell, 32 (2015),pp. 97-108
|
[10] |
Miner, J.H., Yurchenco, P.D. Laminin functions in tissue morphogenesis Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 255-284
|
[11] |
Murshed, M., Smyth, N., Miosge, N. et al. The absence of nidogen 1 does not affect murine basement membrane formation Mol. Cell. Biol., 20 (2000),pp. 7007-7012
|
[12] |
Nasevicius, A., Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish Nat. Genet., 26 (2000),pp. 216-220
|
[13] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[14] |
Randles, M.J., Humphries, M.J., Lennon, R. Proteomic definitions of basement membrane composition in health and disease Matrix Biol., 57–58 (2017),pp. 12-28
|
[15] |
Robu, M.E., Larson, J.D., Nasevicius, A. et al. p53 activation by knockdown technologies PLoS Genet., 3 (2007),p. e78
|
[16] |
Rossi, A., Kontarakis, Z., Gerri, C. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns Nature, 524 (2015),pp. 230-233
|
[17] |
Schymeinsky, J., Nedbal, S., Miosge, N. et al. Mol. Cell. Biol., 22 (2002),pp. 6820-6830
|
[18] |
Timpl, R., Brown, J.C. Supramolecular assembly of basement membranes Bioessays, 18 (1996),pp. 123-132
|
[19] |
Timpl, R., Dziadek, M., Fujiwara, S. et al. Nidogen: a new, self-aggregating basement membrane protein Eur. J. Biochem., 137 (1983),pp. 455-465
|
[20] |
Wei, S., Dai, M., Liu, Z. et al. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal beta-catenin activation Cell Res., 27 (2017),pp. 202-225
|