[1] |
Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
|
[2] |
Barrangou, R., Marraffini, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity Mol. Cell, 54 (2014),pp. 234-244
|
[3] |
Breuert, S., Allers, T., Spohn, G. et al. Regulated polyploidy in halophilic archaea PLoS One, 1 (2006),p. e92
|
[4] |
Brouns, S.J.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
|
[5] |
Cai, S.F., Cai, L., Liu, H.L. et al. Appl. Environ. Microbiol., 78 (2012),pp. 1946-1952
|
[6] |
Cai, S.F., Cai, L., Zhao, D.H. et al. Appl. Environ. Microbiol., 81 (2015),pp. 373-385
|
[7] |
Carte, J., Pfister, N.T., Compton, M.M. et al. Binding and cleavage of CRISPR RNA by Cas6 RNA, 16 (2010),pp. 2181-2188
|
[8] |
Cline, S.W., Lam, W.L., Charlebois, R.L. et al. Transformation methods for halophilic archaebacteria Can. J. Microbiol., 35 (1989),pp. 148-152
|
[9] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[10] |
Deltcheva, E., Chylinski, K., Sharma, C.M. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III Nature, 471 (2011),pp. 602-607
|
[11] |
DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
|
[12] |
Fischer, S., Maier, L.K., Stoll, B. et al. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA J. Biol. Chem., 287 (2012),pp. 33351-33363
|
[13] |
Garneau, J.E., Dupuis, M.È., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
|
[14] |
Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
|
[15] |
Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease Science, 329 (2010),pp. 1355-1358
|
[16] |
Jiang, W.Y., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
|
[17] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[18] |
Kim, D., Kim, J., Hur, J.K. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells Nat. Biotechnol., 34 (2016),pp. 863-868
|
[19] |
Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells Nat. Biotechnol., 34 (2016),pp. 869-875
|
[20] |
Li, M., Liu, H.L., Han, J. et al. J. Bacteriol., 195 (2013),pp. 867-875
|
[21] |
Li, M., Gong, L.Y., Zhao, D.H. et al. The spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer Nucleic Acids Res., 45 (2017),pp. 4642-4654
|
[22] |
Li, M., Wang, R., Xiang, H. Nucleic Acids Res., 42 (2014),pp. 7226-7235
|
[23] |
Li, M., Wang, R., Zhao, D.H. et al. Nucleic Acids Res., 42 (2014),pp. 2483-2492
|
[24] |
Li, Y.J., Pan, S.F., Zhang, Y. et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing Nucleic Acids Res., 44 (2016),p. e34
|
[25] |
Liu, H.L., Han, J., Liu, X.Q. et al. J. Genet. Genomics, 38 (2011),pp. 261-269
|
[26] |
Maier, L.K., Stachler, A.E., Saunders, S.J. et al. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein J. Biol. Chem., 290 (2015),pp. 4192-4201
|
[27] |
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S. et al. An updated evolutionary classification of CRISPR-Cas systems Nat. Rev. Microbiol., 13 (2015),pp. 722-736
|
[28] |
Mali, P., Yang, L.H., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
|
[29] |
Marraffini, L.A., Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA Science, 322 (2008),pp. 1843-1845
|
[30] |
Marraffini, L.A., Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea Nat. Rev. Genet., 11 (2010),pp. 181-190
|
[31] |
Plagens, A., Richter, H., Charpentier, E. et al. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes FEMS Microbiol. Rev., 39 (2015),pp. 442-463
|
[32] |
Pyne, M.E., Bruder, M.R., Moo-Young, M. et al. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium Sci. Rep., 6 (2016),p. 25666
|
[33] |
Sambrook, J., Fritsch, E.F., Maniatis, T.
|
[34] |
Semenova, E., Jore, M.M., Datsenko, K.A. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 10098-10103
|
[35] |
Shan, Q.W., Wang, Y.P., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[36] |
Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems Mol. Cell, 60 (2015),pp. 385-397
|
[37] |
Shmakov, S., Smargon, A., Scott, D. et al. Diversity and evolution of class 2 CRISPR-Cas systems Nat. Rev. Microbiol., 15 (2017),pp. 169-182
|
[38] |
Sorek, R., Kunin, V., Hugenholtz, P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea Nat. Rev. Microbiol., 6 (2008),pp. 181-186
|
[39] |
Stachler, A.E., Turgeman-Grott, I., Shtifman-Segal, E. et al. High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon Nucleic Acids Res., 45 (2017),pp. 5208-5216
|
[40] |
Sternberg, S.H., Richter, H., Charpentier, E. et al. Adaptation in CRISPR-Cas systems Mol. Cell, 61 (2016),pp. 797-808
|
[41] |
van der Oost, J., Jore, M.M., Westra, E.R. et al. CRISPR-based adaptive and heritable immunity in prokaryotes Trends biochem. Sci., 34 (2009),pp. 401-407
|
[42] |
Wang, H.Y., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[43] |
Wang, R., Li, M., Gong, L.Y. et al. Nucleic Acids Res., 44 (2016),pp. 4266-4277
|
[44] |
Westra, E.R., Buckling, A., Fineran, P.C. CRISPR-Cas systems: beyond adaptive immunity Nat. Rev. Microbiol., 12 (2014),pp. 317-326
|
[45] |
Westra, E.R., Semenova, E., Datsenko, K.A. et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition PLoS Genet., 9 (2013),p. e1003742
|
[46] |
Wiedenheft, B., van Duijn, E., Bultema, J. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 10092-10097
|
[47] |
Wu, Z.F., Liu, J.F., Yang, H.B. et al. Nucleic Acids Res., 42 (2014),pp. 2282-2294
|
[48] |
Zerulla, K., Chimileski, S., Näther, D. et al. DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival PLoS One, 9 (2014),p. e94819
|
[49] |
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
|