5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 11
Nov.  2017
Turn off MathJax
Article Contents

Cotton functional genomics reveals global insight into genome evolution and fiber development

doi: 10.1016/j.jgg.2017.09.009
More Information
  • Corresponding author: E-mail address: zhuyx@whu.edu.cn (Yuxian Zhu)
  • Received Date: 2017-06-15
  • Accepted Date: 2017-09-25
  • Rev Recd Date: 2017-08-22
  • Available Online: 2017-11-14
  • Publish Date: 2017-11-20
  • Due to the economic value of natural textile fiber, cotton has attracted much research attention, which has led to the publication of two diploid genomes and two tetraploid genomes. These big data facilitate functional genomic study in cotton, and allow researchers to investigate cotton genome structure, gene expression, and protein function on the global scale using high-throughput methods. In this review, we summarized recent studies of cotton genomes. Population genomic analyses revealed the domestication history of cultivated upland cotton and the roles of transposable elements in cotton genome evolution. Alternative splicing of cotton transcriptomes was evaluated genome-widely. Several important gene families like MYC, NAC, Sus and GhPLDα1 were systematically identified and classified based on genetic structure and biological function. High-throughput proteomics also unraveled the key functional proteins correlated with fiber development. Functional genomic studies have provided unprecedented insights into global-scale methods for cotton research.
  • loading
  • [1]
    Baur, M.E., Boethel, D.J. Biol. Contr., 26 (2003),pp. 325-332
    [2]
    Bevan, M.W., Uauy, C., Wulff, B.B.H. et al. Genomic innovation for crop improvement Nature, 543 (2017),pp. 346-354
    [3]
    Carriere, Y., Crickmore, N., Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management Nat. Biotech., 33 (2015),pp. 161-168
    [4]
    Chen, X., Lu, X., Shu, N. et al. Sci. Rep., 7 (2017),p. 44304
    [5]
    Cheng, H.Q., Han, L.B., Yang, C.L. et al. J. Exp. Bot., 67 (2016),pp. 1935-1950
    [6]
    Effenberger, I., Harport, M., Pfannstiel, J. et al. Appl. Microbiol. Biotechnol., 101 (2016),pp. 2021-2032
    [7]
    Fabrick, J.A., Tabashnik, B.E. Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm PLoS One, 7 (2012),p. e35658
    [8]
    Fang, L., Wang, Q., Hu, Y. et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits Nat. Genet., 49 (2017),pp. 1089-1098
    [9]
    Flint, H.M., Henneberry, T.J., Wilson, F.D. et al. S. Entomol., 20 (1995),pp. 281-292
    [10]
    Gennadios, H.A., Gonzalez, V., Costanzo, D.L. et al. Biochemistry, 48 (2009),pp. 6175-6183
    [11]
    Gowda, A., Rydel, T.J., Wollcott, A.M. et al. A transgenic approach for controlling Lygus in cotton Nat. Commun., 7 (2016),p. 12213
    [12]
    Gunapati, S., Naresh, R., Ranjan, S. et al. Sci. Rep., 6 (2016),p. 24978
    [13]
    Hagerty, A.M., Kilpatrick, A.L., Turnipseed, S.G. et al. Predaceous arthropods and lepidopteran pests on conventional, Bollgard, and Bollgard II cotton under untreated and disrupted conditions Environ. Entomol., 34 (2005),pp. 105-114
    [14]
    Hardee, D.D., Bryan, W.W. J. Econ. Entomol., 90 (1997),pp. 663-668
    [15]
    He, Q., Jones, D.C., Li, W. et al. Sci. Rep., 6 (2016),p. 22980
    [16]
    He, X., Zhu, L., Xu, L. et al. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks Plant Cell Rep., 35 (2016),pp. 2167-2179
    [17]
    Hu, H., He, X., Tu, L. et al. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like Plant J., 88 (2016),pp. 921-935
    [18]
    Huang, J., Chen, F., Wu, S. et al. Sci. China Life Sci., 59 (2016),pp. 194-205
    [19]
    Jiao, Y., Zhang, Y., Zhu, Y. Sci. China Life Sci., 59 (2016),pp. 825-831
    [20]
    Jin, X., Li, Q., Xiao, G. et al. J. Integr. Plant Biol., 55 (2013),pp. 576-585
    [21]
    Jin, X., Wang, L., He, L. et al. Two dimensional electrophoresis gel based analysis provide global insights of cotton ovule and fiber proteomes Sci. China Life Sci., 59 (2016),pp. 154-163
    [22]
    Krempl, C., Sporer, T., Reichelt, M. et al. Insect Biochem. Mol. Biol., 71 (2016),pp. 49-57
    [23]
    Li, C., Unver, T., Zhang, B. Sci. Rep., 7 (2017),p. 43902
    [24]
    Li, F., Fan, G., Lu, C. et al. Nat. Biotech., 33 (2015),pp. 524-530
    [25]
    Li, F., Fan, G., Wang, K. et al. Nat. Genet., 46 (2014),pp. 567-572
    [26]
    Li, Q., Xiao, G., Zhu, Y.X. Mol. Plant, 7 (2014),pp. 829-840
    [27]
    Liu, J., Pang, C., Wei, H. et al. BMC Plant Biol., 14 (2014),p. 390
    [28]
    Liu, X., Zhao, B., Zheng, H. et al. Sci. Rep., 5 (2015),p. 14139
    [29]
    Ma, D., Hu, Y., Yang, C. et al. Genetic basis for glandular trichome formation in cotton Nat. Commun., 7 (2016),p. 10456
    [30]
    McCarthy, D.J., Smyth, G.K. Testing significance relative to a fold-change threshold is a treat Bioinformatics, 25 (2009),pp. 765-771
    [31]
    Meng, Y., Liu, F., Pang, C. et al. Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide J. Proteome Res., 10 (2011),pp. 5416-5432
    [32]
    Ni, M., Ma, W., Wang, X. et al. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance Plant Biotechnol. J., 15 (2017),pp. 1204-1213
    [33]
    Paterson, A.H., Wendel, J.F., Gundlach, H. et al. Nature, 492 (2012),pp. 423-427
    [34]
    Ponsard, S., Gutierrez, A.P., Mills, N.J. Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators Environ. Entomol., 31 (2002),pp. 1197-1205
    [35]
    Pu, L., Li, Q., Fan, X. et al. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development Genetics, 180 (2008),pp. 811-820
    [36]
    Qin, Y., Hu, C.Y., Pang, Y. et al. Plant Cell, 19 (2007),pp. 3692-3704
    [37]
    Qin, Y., Wei, H., Sun, H. et al. J. Proteome Res., 16 (2017),pp. 2811-2824
    [38]
    Ribeiro, T.P., Arraes, F.B., Lourenço-Tessutti, I.T. et al. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil Plant Biotechnol. J., 15 (2017),pp. 997-1009
    [39]
    Romeis, J., Meissle, M., Bigler, F. Nat. Biotech., 24 (2006),pp. 63-71
    [40]
    Salih, H., Gong, W., He, S. et al. BMC Genet., 17 (2016),p. 129
    [41]
    Shang, H., Li, W., Zou, C. et al. J. Integr. Plant Biol., 55 (2013),pp. 663-676
    [42]
    Shang, H., Wang, Z., Zou, C. et al. Sci. China Life Sci., 59 (2016),pp. 142-153
    [43]
    Shukla, A.K., Upadhyay, S.K., Mishra, M. et al. Expression of an insecticidal fern protein in cotton protects against whitefly Nat. Biotech., 34 (2016),pp. 1046-1051
    [44]
    Suo, J., Liang, X., Pu, L. et al. Biochim. Biophys. Acta, 1630 (2003),pp. 25-34
    [45]
    Tabashnik, B.E., Patin, A.L., Dennehy, T.J. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 12980-12984
    [46]
    Tabashnik, B.E., Unnithan, G.C., Masson, L. et al. Proc. Natl. Acad. Sci. U. S. A., 16 (2009),pp. 11889-11984
    [47]
    Tang, K., Dong, C.J., Liu, J.Y. Sci. China Life Sci., 59 (2016),pp. 130-141
    [48]
    Tang, K., Liu, J.Y. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers Acta Biochim. Biophys. Sin., 49 (2017),pp. 33-43
    [49]
    Tian, X., Ruan, J., Huang, J. et al. Gossypol: phytoalexin of cotton Sci. China Life Sci., 59 (2016),pp. 122-129
    [50]
    Wang, K., Huang, G., Zhu, Y. Transposable elements play an important role during cotton genome evolution and fiber cell development Sci. China Life Sci., 59 (2016),pp. 112-121
    [51]
    Wang, K., Wang, Z., Li, F. et al. Nat. Genet., 44 (2012),pp. 1098-1103
    [52]
    Wang, M., Tu, L., Lin, M. et al. Nat. Genet., 49 (2017),pp. 579-587
    [53]
    Wang, P., Zhang, J., Sun, L. et al. Plant Biotechnol. J. (2017)
    [54]
    Wang, Q., Zhu, Y., Sun, L. et al. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds Sci. China Life Sci., 59 (2016),pp. 172-182
    [55]
    Wang, W., Yuan, Y., Yang, C. et al. G3, 6 (2016),pp. 3951-3961
    [56]
    Wilson, D.F., Flint, H.M., Deaton, R.W. et al. J. Econ. Entomol., 85 (1992),pp. 1516-1521
    [57]
    Xiao, G.H., Wang, K., Huang, G. et al. J. Integr. Plant Biol., 58 (2016),pp. 577-589
    [58]
    Yue, Z., Liu, X., Zhou, Z. et al. Development of a novel-type transgenic cotton plant for control of cotton bollworm Plant Biotechnol. J., 14 (2016),pp. 1747-1755
    [59]
    Zhang, B., Du, S.J., Hu, J. et al. Comparative proteomic analyses of Asian cotton ovules with attached fibers in the early stages of fiber elongation process Proteome Sci., 14 (2016),p. 13
    [60]
    Zhang, H., Ni, Z., Chen, Q. et al. Proteomic responses of drought-tolerant and drough-sensitive cotton varieties to drought stress Mol. Genet. Genomics, 291 (2016),pp. 1293-1303
    [61]
    Zhang, T., Hu, Y., Jiang, W. et al. Nat. Biotech., 33 (2015),pp. 531-537
    [62]
    Zhang, T., Zhao, Y.L., Zhao, J.H. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen Nat. Plants, 2 (2016),p. 16153
    [63]
    Zhao, Y.L., Zhou, T.T., Guo, H.S. PLoS Pathog., 12 (2016),p. e1005793
    [64]
    Zhu, Y.X. The post-genomics era of cotton Sci. China. Life. Sci., 59 (2016),pp. 109-111
    [65]
    Zou, C., Lu, C., Shang, H. et al. J. Integr. Plant Biol., 55 (2013),pp. 643-653
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return