5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 11
Nov.  2017
Turn off MathJax
Article Contents

A glycolysis-based ten-gene signature correlates with the clinical outcome, molecular subtype and IDH1 mutation in glioblastoma

doi: 10.1016/j.jgg.2017.05.007
More Information
  • Corresponding author: E-mail address: hkung@cuhk.edu.hk (Hsiang-Fu Kung); E-mail address: pingyifang@126.com (Yi-Fang Ping); E-mail address: bianxiuwu@263.net (Xiu-Wu Bian)
  • Received Date: 2017-02-07
  • Accepted Date: 2017-05-27
  • Rev Recd Date: 2017-04-27
  • Available Online: 2017-09-21
  • Publish Date: 2017-11-20
  • Reprogrammed metabolism is a hallmark of cancer. Glioblastoma (GBM) tumor cells predominantly utilize aerobic glycolysis for the biogenesis of energy and intermediate nutrients. However, in GBM, the clinical significance of glycolysis and its underlying relations with the molecular features such asIDH1 mutation and subtype have not been elucidated yet. Herein, based on glioma datasets including TCGA (The Cancer Genome Atlas), REMBRANDT (Repository for Molecular Brain Neoplasia Data) and GSE16011, we established a glycolytic gene expression signature score (GGESS) by incorporating ten glycolytic genes. Then we performed survival analyses and investigated the correlations between GGESS and IDH1 mutation as well as the molecular subtypes in GBMs. The results showed that GGESS independently predicted unfavorable prognosis and poor response to chemotherapy of GBM patients. Notably, GGESS was high in GBMs of mesenchymal subtype but low in IDH1-mutant GBMs. Furthermore, we found that the promoter regions of tumor-promoting glycolytic genes were hypermethylated in IDH1-mutant GBMs. Finally, we found that high GGESS also predicted poor prognosis and poor response to chemotherapy when investigating IDH1-wildtype GBM patients only. Collectively, glycolysis represented by GGESS predicts unfavorable clinical outcome of GBM patients and is closely associated with mesenchymal subtype and IDH1 mutation in GBMs.
  • loading
  • [1]
    Agnihotri, S., Zadeh, G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions Neuro. Oncol., 18 (2016),pp. 160-172
    [2]
    Ai, Z., Lu, Y., Qiu, S. et al. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism Cancer Lett., 373 (2016),pp. 36-44
    [3]
    Altenberg, B., Greulich, K.O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes Genomics, 84 (2004),pp. 1014-1020
    [4]
    Babic, I., Anderson, E.S., Tanaka, K. et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer Cell Metab., 17 (2013),pp. 1000-1008
    [5]
    Bowman, R.L., Wang, Q., Carro, A. et al. GlioVis data portal for visualization and analysis of brain tumor expression datasets Neuro. Oncol., 19 (2017),pp. 139-141
    [6]
    Brennan, C.W., Verhaak, R.G., McKenna, A. et al. The somatic genomic landscape of glioblastoma Cell, 155 (2013),pp. 462-477
    [7]
    Brindle, K. New approaches for imaging tumour responses to treatment Nat. Rev. Cancer, 8 (2008),pp. 94-107
    [8]
    Byun, B.H., Kong, C.B., Lim, I. et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential (1)(8)F-FDG PET/CT and MRI Eur. J. Nucl. Med. Mol. Imaging, 41 (2014),pp. 1553-1562
    [9]
    Capello, M., Ferri-Borgogno, S., Riganti, C. et al. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest Oncotarget, 7 (2016),pp. 5598-5612
    [10]
    Chae, Y.C., Vaira, V., Caino, M.C. et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming Cancer Cell, 30 (2016),pp. 257-272
    [11]
    Chaneton, B., Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer Trends biochem. Sci., 37 (2012),pp. 309-316
    [12]
    Chiche, J., Pommier, S., Beneteau, M. et al. GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-kappaB-dependent induction of HIF-1alpha Leukemia, 29 (2015),pp. 1163-1176
    [13]
    Clark, O., Yen, K., Mellinghoff, I.K. Molecular pathways: isocitrate dehydrogenase mutations in cancer Clin. Cancer Res., 22 (2016),pp. 1837-1842
    [14]
    Dang, L., White, D.W., Gross, S. et al. Nature, 465 (2010),p. 966
    [15]
    Dawson, D.M., Goodfriend, T.L., Kaplan, N.O. Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can be correlated with metabolic differentiation Science, 143 (1964),pp. 929-933
    [16]
    DeBerardinis, R.J., Mancuso, A., Daikhin, E. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 19345-19350
    [17]
    Deberardinis, R.J., Sayed, N., Ditsworth, D. et al. Brick by brick: metabolism and tumor cell growth Curr. Opin. Genet. Dev., 18 (2008),pp. 54-61
    [18]
    Doherty, J.R., Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics J. Clin. Invest., 123 (2013),pp. 3685-3692
    [19]
    Elstrom, R.L., Bauer, D.E., Buzzai, M. et al. Akt stimulates aerobic glycolysis in cancer cells Cancer Res., 64 (2004),pp. 3892-3899
    [20]
    Erickson, J.W., Cerione, R.A. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget, 1 (2010),pp. 734-740
    [21]
    Federzoni, E.A., Valk, P.J., Torbett, B.E. et al. PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells Blood, 119 (2012),pp. 4963-4970
    [22]
    Fu, Q.F., Liu, Y., Fan, Y. et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway J. Hematol. Oncol., 8 (2015),p. 22
    [23]
    Gravendeel, L.A., Kouwenhoven, M.C., Gevaert, O. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology Cancer Res., 69 (2009),pp. 9065-9072
    [24]
    Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
    [25]
    Harami-Papp, H., Pongor, L.S., Munkacsy, G. et al. Oncotarget, 7 (2016),pp. 67183-67195
    [26]
    He, J., Jin, Y., Chen, Y. et al. Downregulation of ALDOB is associated with poor prognosis of patients with gastric cancer Onco. Targets Ther., 9 (2016),pp. 6099-6109
    [27]
    Hegi, M.E., Diserens, A.C., Gorlia, T. et al. N. Engl. J. Med., 352 (2005),pp. 997-1003
    [28]
    Vander Heiden, M.G., Cantley, L.C., Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation Science, 324 (2009),pp. 1029-1033
    [29]
    Hu, Z.Y., Xiao, L., Bode, A.M. et al. Glycolytic genes in cancer cells are more than glucose metabolic regulators J. Mol. Med. (Berl.), 92 (2014),pp. 837-845
    [30]
    Jiang, Y., Li, X., Yang, W. et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells Mol. Cell, 53 (2014),pp. 75-87
    [31]
    Joseph, J., Cruz-Sanchez, F.F., Carreras, J. Enolase activity and isoenzyme distribution in human brain regions and tumors J. Neurochem., 66 (1996),pp. 2484-2490
    [32]
    Koukourakis, M.I., Giatromanolaki, A., Simopoulos, C. et al. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer Clin. Exp. Metastasis, 22 (2005),pp. 25-30
    [33]
    Koukourakis, M.I., Giatromanolaki, A., Winter, S. et al. Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy Oncology, 77 (2009),pp. 285-292
    [34]
    Louis, D.N., Ohgaki, H., Wiestler, O.D. et al.
    [35]
    Louis, D.N., Perry, A., Reifenberger, G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary Acta Neuropathol., 131 (2016),pp. 803-820
    [36]
    Mao, P., Joshi, K., Li, J. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 8644-8649
    [37]
    Muller, F.L., Colla, S., Aquilanti, E. et al. Passenger deletions generate therapeutic vulnerabilities in cancer Nature, 488 (2012),pp. 337-342
    [38]
    Nabors, L.B., Portnow, J., Ammirati, M. et al. Central nervous system cancers, version 1.2015 J. Natl. Compr. Canc. Netw., 13 (2015),pp. 1191-1202
    [39]
    Nguyen, A., Loo, J.M., Mital, R. et al. PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis J. Clin. Invest., 126 (2016),pp. 681-694
    [40]
    Noushmehr, H., Weisenberger, D.J., Diefes, K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma Cancer Cell, 17 (2010),pp. 510-522
    [41]
    Ostrom, Q.T., Gittleman, H., Fulop, J. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012 Neuro. Oncol., 17 (2015),pp. iv1-iv62
    [42]
    Oudard, S., Arvelo, F., Miccoli, L. et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss Br. J. Cancer, 74 (1996),pp. 839-845
    [43]
    Parker, S.J., Metallo, C.M. Pharmacol. Ther., 152 (2015),pp. 54-62
    [44]
    Parsons, D.W., Jones, S., Zhang, X. et al. An integrated genomic analysis of human glioblastoma multiforme Science, 321 (2008),pp. 1807-1812
    [45]
    Patra, K.C., Wang, Q., Bhaskar, P.T. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer Cancer Cell, 24 (2013),pp. 213-228
    [46]
    Puzone, R., Savarino, G., Salvi, S. et al. Glyceraldehyde-3-phosphate dehydrogenase gene over expression correlates with poor prognosis in non small cell lung cancer patients Mol. Cancer, 12 (2013),p. 97
    [47]
    Rickman, D.S., Bobek, M.P., Misek, D.E. et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis Cancer Res., 61 (2001),pp. 6885-6891
    [48]
    Roy, P., Kumar, B., Shende, A. et al. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes PLoS One, 8 (2013),p. e63670
    [49]
    Sandulache, V.C., Skinner, H.D., Wang, Y. et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation Mol. Cancer Ther., 11 (2012),pp. 1373-1380
    [50]
    Sellick, C.A., Campbell, R.N., Reece, R.J. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them Int. Rev. Cell Mol. Biol., 269 (2008),pp. 111-150
    [51]
    Shime, H., Yabu, M., Akazawa, T. et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway J. Immunol., 180 (2008),pp. 7175-7183
    [52]
    Song, Y., Luo, Q., Long, H. et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma Mol. Cancer, 13 (2014),p. 65
    [53]
    Tao, Q.F., Yuan, S.X., Yang, F. et al. Aldolase B inhibits metastasis through Ten-Eleven Translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma Mol. Cancer, 14 (2015),p. 170
    [54]
    Tateishi, K., Iafrate, A.J., Ho, Q. et al. Myc-driven glycolysis is a therapeutic target in glioblastoma Clin. Cancer Res., 22 (2016),pp. 4452-4465
    [55]
    Toyonaga, T., Yamaguchi, S., Hirata, K. et al. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor Eur. J. Nucl. Med. Mol. Imaging, 44 (2017),pp. 611-619
    [56]
    Tran, A.N., Lai, A., Li, S. et al. Neuro. Oncol., 16 (2014),pp. 414-420
    [57]
    Turcan, S., Rohle, D., Goenka, A. et al. Nature, 483 (2012),pp. 479-483
    [58]
    Vegran, F., Boidot, R., Michiels, C. et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis Cancer Res., 71 (2011),pp. 2550-2560
    [59]
    Verhaak, R.G., Hoadley, K.A., Purdom, E. et al. Cancer Cell, 17 (2010),pp. 98-110
    [60]
    Vlashi, E., Lagadec, C., Vergnes, L. et al. Metabolic state of glioma stem cells and nontumorigenic cells Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 16062-16067
    [61]
    Warburg, O. On the origin of cancer cells Science, 123 (1956),pp. 309-314
    [62]
    Ward, P.S., Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate Cancer Cell, 21 (2012),pp. 297-308
    [63]
    Whitfield, M.L., George, L.K., Grant, G.D. et al. Common markers of proliferation Nat. Rev. Cancer, 6 (2006),pp. 99-106
    [64]
    Wike-Hooley, J.L., Haveman, J., Reinhold, H.S. The relevance of tumour pH to the treatment of malignant disease Radiother. Oncol., 2 (1984),pp. 343-366
    [65]
    Wolf, A., Agnihotri, S., Micallef, J. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme J. Exp. Med., 208 (2011),pp. 313-326
    [66]
    Xu, W., Yang, H., Liu, Y. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases Cancer Cell, 19 (2011),pp. 17-30
    [67]
    Yan, H., Parsons, D.W., Jin, G. et al. N. Engl. J. Med., 360 (2009),pp. 765-773
    [68]
    Yang, W., Xia, Y., Cao, Y. et al. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis Mol. Cell, 48 (2012),pp. 771-784
    [69]
    Yang, W., Xia, Y., Hawke, D. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis Cell, 150 (2012),pp. 685-696
    [70]
    Yang, W., Xia, Y., Ji, H. et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation Nature, 480 (2011),pp. 118-122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return