[1] |
Agnihotri, S., Zadeh, G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions Neuro. Oncol., 18 (2016),pp. 160-172
|
[2] |
Ai, Z., Lu, Y., Qiu, S. et al. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism Cancer Lett., 373 (2016),pp. 36-44
|
[3] |
Altenberg, B., Greulich, K.O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes Genomics, 84 (2004),pp. 1014-1020
|
[4] |
Babic, I., Anderson, E.S., Tanaka, K. et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer Cell Metab., 17 (2013),pp. 1000-1008
|
[5] |
Bowman, R.L., Wang, Q., Carro, A. et al. GlioVis data portal for visualization and analysis of brain tumor expression datasets Neuro. Oncol., 19 (2017),pp. 139-141
|
[6] |
Brennan, C.W., Verhaak, R.G., McKenna, A. et al. The somatic genomic landscape of glioblastoma Cell, 155 (2013),pp. 462-477
|
[7] |
Brindle, K. New approaches for imaging tumour responses to treatment Nat. Rev. Cancer, 8 (2008),pp. 94-107
|
[8] |
Byun, B.H., Kong, C.B., Lim, I. et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential (1)(8)F-FDG PET/CT and MRI Eur. J. Nucl. Med. Mol. Imaging, 41 (2014),pp. 1553-1562
|
[9] |
Capello, M., Ferri-Borgogno, S., Riganti, C. et al. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest Oncotarget, 7 (2016),pp. 5598-5612
|
[10] |
Chae, Y.C., Vaira, V., Caino, M.C. et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming Cancer Cell, 30 (2016),pp. 257-272
|
[11] |
Chaneton, B., Gottlieb, E. Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer Trends biochem. Sci., 37 (2012),pp. 309-316
|
[12] |
Chiche, J., Pommier, S., Beneteau, M. et al. GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-kappaB-dependent induction of HIF-1alpha Leukemia, 29 (2015),pp. 1163-1176
|
[13] |
Clark, O., Yen, K., Mellinghoff, I.K. Molecular pathways: isocitrate dehydrogenase mutations in cancer Clin. Cancer Res., 22 (2016),pp. 1837-1842
|
[14] |
Dang, L., White, D.W., Gross, S. et al. Nature, 465 (2010),p. 966
|
[15] |
Dawson, D.M., Goodfriend, T.L., Kaplan, N.O. Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can be correlated with metabolic differentiation Science, 143 (1964),pp. 929-933
|
[16] |
DeBerardinis, R.J., Mancuso, A., Daikhin, E. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 19345-19350
|
[17] |
Deberardinis, R.J., Sayed, N., Ditsworth, D. et al. Brick by brick: metabolism and tumor cell growth Curr. Opin. Genet. Dev., 18 (2008),pp. 54-61
|
[18] |
Doherty, J.R., Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics J. Clin. Invest., 123 (2013),pp. 3685-3692
|
[19] |
Elstrom, R.L., Bauer, D.E., Buzzai, M. et al. Akt stimulates aerobic glycolysis in cancer cells Cancer Res., 64 (2004),pp. 3892-3899
|
[20] |
Erickson, J.W., Cerione, R.A. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget, 1 (2010),pp. 734-740
|
[21] |
Federzoni, E.A., Valk, P.J., Torbett, B.E. et al. PU.1 is linking the glycolytic enzyme HK3 in neutrophil differentiation and survival of APL cells Blood, 119 (2012),pp. 4963-4970
|
[22] |
Fu, Q.F., Liu, Y., Fan, Y. et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway J. Hematol. Oncol., 8 (2015),p. 22
|
[23] |
Gravendeel, L.A., Kouwenhoven, M.C., Gevaert, O. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology Cancer Res., 69 (2009),pp. 9065-9072
|
[24] |
Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
|
[25] |
Harami-Papp, H., Pongor, L.S., Munkacsy, G. et al. Oncotarget, 7 (2016),pp. 67183-67195
|
[26] |
He, J., Jin, Y., Chen, Y. et al. Downregulation of ALDOB is associated with poor prognosis of patients with gastric cancer Onco. Targets Ther., 9 (2016),pp. 6099-6109
|
[27] |
Hegi, M.E., Diserens, A.C., Gorlia, T. et al. N. Engl. J. Med., 352 (2005),pp. 997-1003
|
[28] |
Vander Heiden, M.G., Cantley, L.C., Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation Science, 324 (2009),pp. 1029-1033
|
[29] |
Hu, Z.Y., Xiao, L., Bode, A.M. et al. Glycolytic genes in cancer cells are more than glucose metabolic regulators J. Mol. Med. (Berl.), 92 (2014),pp. 837-845
|
[30] |
Jiang, Y., Li, X., Yang, W. et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells Mol. Cell, 53 (2014),pp. 75-87
|
[31] |
Joseph, J., Cruz-Sanchez, F.F., Carreras, J. Enolase activity and isoenzyme distribution in human brain regions and tumors J. Neurochem., 66 (1996),pp. 2484-2490
|
[32] |
Koukourakis, M.I., Giatromanolaki, A., Simopoulos, C. et al. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer Clin. Exp. Metastasis, 22 (2005),pp. 25-30
|
[33] |
Koukourakis, M.I., Giatromanolaki, A., Winter, S. et al. Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy Oncology, 77 (2009),pp. 285-292
|
[34] |
Louis, D.N., Ohgaki, H., Wiestler, O.D. et al.
|
[35] |
Louis, D.N., Perry, A., Reifenberger, G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary Acta Neuropathol., 131 (2016),pp. 803-820
|
[36] |
Mao, P., Joshi, K., Li, J. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 8644-8649
|
[37] |
Muller, F.L., Colla, S., Aquilanti, E. et al. Passenger deletions generate therapeutic vulnerabilities in cancer Nature, 488 (2012),pp. 337-342
|
[38] |
Nabors, L.B., Portnow, J., Ammirati, M. et al. Central nervous system cancers, version 1.2015 J. Natl. Compr. Canc. Netw., 13 (2015),pp. 1191-1202
|
[39] |
Nguyen, A., Loo, J.M., Mital, R. et al. PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis J. Clin. Invest., 126 (2016),pp. 681-694
|
[40] |
Noushmehr, H., Weisenberger, D.J., Diefes, K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma Cancer Cell, 17 (2010),pp. 510-522
|
[41] |
Ostrom, Q.T., Gittleman, H., Fulop, J. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012 Neuro. Oncol., 17 (2015),pp. iv1-iv62
|
[42] |
Oudard, S., Arvelo, F., Miccoli, L. et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss Br. J. Cancer, 74 (1996),pp. 839-845
|
[43] |
Parker, S.J., Metallo, C.M. Pharmacol. Ther., 152 (2015),pp. 54-62
|
[44] |
Parsons, D.W., Jones, S., Zhang, X. et al. An integrated genomic analysis of human glioblastoma multiforme Science, 321 (2008),pp. 1807-1812
|
[45] |
Patra, K.C., Wang, Q., Bhaskar, P.T. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer Cancer Cell, 24 (2013),pp. 213-228
|
[46] |
Puzone, R., Savarino, G., Salvi, S. et al. Glyceraldehyde-3-phosphate dehydrogenase gene over expression correlates with poor prognosis in non small cell lung cancer patients Mol. Cancer, 12 (2013),p. 97
|
[47] |
Rickman, D.S., Bobek, M.P., Misek, D.E. et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis Cancer Res., 61 (2001),pp. 6885-6891
|
[48] |
Roy, P., Kumar, B., Shende, A. et al. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes PLoS One, 8 (2013),p. e63670
|
[49] |
Sandulache, V.C., Skinner, H.D., Wang, Y. et al. Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation Mol. Cancer Ther., 11 (2012),pp. 1373-1380
|
[50] |
Sellick, C.A., Campbell, R.N., Reece, R.J. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them Int. Rev. Cell Mol. Biol., 269 (2008),pp. 111-150
|
[51] |
Shime, H., Yabu, M., Akazawa, T. et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway J. Immunol., 180 (2008),pp. 7175-7183
|
[52] |
Song, Y., Luo, Q., Long, H. et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma Mol. Cancer, 13 (2014),p. 65
|
[53] |
Tao, Q.F., Yuan, S.X., Yang, F. et al. Aldolase B inhibits metastasis through Ten-Eleven Translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma Mol. Cancer, 14 (2015),p. 170
|
[54] |
Tateishi, K., Iafrate, A.J., Ho, Q. et al. Myc-driven glycolysis is a therapeutic target in glioblastoma Clin. Cancer Res., 22 (2016),pp. 4452-4465
|
[55] |
Toyonaga, T., Yamaguchi, S., Hirata, K. et al. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor Eur. J. Nucl. Med. Mol. Imaging, 44 (2017),pp. 611-619
|
[56] |
Tran, A.N., Lai, A., Li, S. et al. Neuro. Oncol., 16 (2014),pp. 414-420
|
[57] |
Turcan, S., Rohle, D., Goenka, A. et al. Nature, 483 (2012),pp. 479-483
|
[58] |
Vegran, F., Boidot, R., Michiels, C. et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis Cancer Res., 71 (2011),pp. 2550-2560
|
[59] |
Verhaak, R.G., Hoadley, K.A., Purdom, E. et al. Cancer Cell, 17 (2010),pp. 98-110
|
[60] |
Vlashi, E., Lagadec, C., Vergnes, L. et al. Metabolic state of glioma stem cells and nontumorigenic cells Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 16062-16067
|
[61] |
Warburg, O. On the origin of cancer cells Science, 123 (1956),pp. 309-314
|
[62] |
Ward, P.S., Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate Cancer Cell, 21 (2012),pp. 297-308
|
[63] |
Whitfield, M.L., George, L.K., Grant, G.D. et al. Common markers of proliferation Nat. Rev. Cancer, 6 (2006),pp. 99-106
|
[64] |
Wike-Hooley, J.L., Haveman, J., Reinhold, H.S. The relevance of tumour pH to the treatment of malignant disease Radiother. Oncol., 2 (1984),pp. 343-366
|
[65] |
Wolf, A., Agnihotri, S., Micallef, J. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme J. Exp. Med., 208 (2011),pp. 313-326
|
[66] |
Xu, W., Yang, H., Liu, Y. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases Cancer Cell, 19 (2011),pp. 17-30
|
[67] |
Yan, H., Parsons, D.W., Jin, G. et al. N. Engl. J. Med., 360 (2009),pp. 765-773
|
[68] |
Yang, W., Xia, Y., Cao, Y. et al. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis Mol. Cell, 48 (2012),pp. 771-784
|
[69] |
Yang, W., Xia, Y., Hawke, D. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis Cell, 150 (2012),pp. 685-696
|
[70] |
Yang, W., Xia, Y., Ji, H. et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation Nature, 480 (2011),pp. 118-122
|