5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 8
Aug.  2017
Turn off MathJax
Article Contents

Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII

doi: 10.1016/j.jgg.2017.03.009
More Information
  • Corresponding author: E-mail address: guoyan@cau.edu.cn (Yan Guo)
  • Received Date: 2017-01-04
  • Accepted Date: 2017-03-27
  • Rev Recd Date: 2017-03-01
  • Available Online: 2017-08-12
  • Publish Date: 2017-08-20
  • Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity.
  • loading
  • [1]
    Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. Science, 301 (2003),pp. 653-657
    [2]
    Baker, A., Hogg, Thomas L., Warriner, Stuart L. Peroxisome protein import: a complex journey Biochem. Soc. Trans., 44 (2016),pp. 783-789
    [3]
    Basha, E., Friedrich, K.L., Vierling, E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity J. Biol. Chem., 281 (2006),pp. 39943-39952
    [4]
    Basha, E., O'Neill, H., Vierling, E. Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions Trends Biochem. Sci., 37 (2012),pp. 106-117
    [5]
    Beers, R.F., Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase J. Biol. Chem., 195 (1952),pp. 133-140
    [6]
    Bondino, H.G., Valle, E.M., ten Have, A. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants Planta, 235 (2012),pp. 1299-1313
    [7]
    Brocard, C., Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta, 1763 (2006),pp. 1565-1573
    [8]
    Chelikani, P., Fita, I., Loewen, P.C. Diversity of structures and properties among catalases Cell. Mol. Life Sci., 61 (2004),pp. 192-208
    [9]
    Chen, Q., Osteryoung, K., Vierling, E. J. Biol. Chem., 269 (1994),pp. 13216-13223
    [10]
    Chen, R.Q., Sun, S.L., Wang, C. et al. Cell Res., 19 (2009),pp. 1377-1387
    [11]
    Chowdhary, G., Kataya, A.R.A., Lingner, T. et al. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis BMC Plant Biol., 12 (2012),p. 142
    [12]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [13]
    del Rio, L.A., Sandalio, L.M., Corpas, F.J. et al. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling Plant Physiol., 141 (2006),pp. 330-335
    [14]
    Frugoli, J.A., Zhong, H.H., Nuccio, M.L. et al. Plant Physiol., 112 (1996),pp. 327-336
    [15]
    Fukamatsu, Y., Yabe, N., Hasunuma, K. Plant Cell Physiol., 44 (2003),pp. 982-989
    [16]
    Gould, S.J., Keller, G.A., Subramani, S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase J. Cell Biol., 105 (1987),pp. 2923-2931
    [17]
    Hackenberg, T., Juul, T., Auzina, A. et al. Plant Cell, 25 (2013),pp. 4616-4626
    [18]
    Haslbeck, M., Franzmann, T., Weinfurtner, D. et al. Some like it hot: the structure and function of small heat-shock proteins Nat. Struct. Mol. Biol., 12 (2005),pp. 842-846
    [19]
    Hu, Y.Q., Liu, S., Yuan, H.M. et al. Plant Cell Environ., 33 (2010),pp. 1656-1670
    [20]
    Jaya, N., Garcia, V., Vierling, E. Substrate binding site flexibility of the small heat shock protein molecular chaperones Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 15604-15609
    [21]
    Kamigaki, A., Mano, S., Terauchi, K. et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor Plant J., 33 (2003),pp. 161-175
    [22]
    Kunze, M., Neuberger, G., Maurer-Stroh, S. et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7 J. Biol. Chem., 286 (2011),pp. 45048-45062
    [23]
    Li, J., Liu, J., Wang, G. et al. Plant Cell, 27 (2015),pp. 908-925
    [24]
    Li, Y.S., Chen, L.C., Mu, J.Y. et al. Plant Physiol., 163 (2013),pp. 1059-1070
    [25]
    Lingner, T., Kataya, A.R., Antonicelli, G.E. et al. Plant Cell, 23 (2011),pp. 1556-1572
    [26]
    Liu, J.T., Guo, Y. J. Genet. Genomics, 38 (2011),pp. 307-313
    [27]
    Livak, K.J., Schmittgen, T.D. Methods, 25 (2001),pp. 402-408
    [28]
    Loew, O. A new enzyme of general occurrence in organisms Science, 11 (1900),pp. 701-702
    [29]
    Ma, C., Reumann, S. J. Exp. Bot., 59 (2008),pp. 3767-3779
    [30]
    Ma, C.L., Haslbeck, M., Babujee, L. et al. Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes Plant Physiol., 141 (2006),pp. 47-60
    [31]
    Mathioudakis, M.M., Veiga, R.S.L., Canto, T. et al. Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation Mol. Plant Pathol., 14 (2013),pp. 589-601
    [32]
    McDonald, E.T., Bortolus, M., Koteiche, H.A. et al. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain Biochemistry, 51 (2012),pp. 1257-1268
    [33]
    Mhamdi, A., Noctor, G., Baker, A. Plant catalases: peroxisomal redox guardians Arch. Biochem. Biophys., 525 (2012),pp. 181-194
    [34]
    Mhamdi, A., Queval, G., Chaouch, S. et al. J. Exp. Bot., 61 (2010),pp. 4197-4220
    [35]
    Moirangthem, L.D., Bhattacharya, S., Stensjo, K. et al. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133 Appl. Microbiol. Biotechnol., 98 (2014),pp. 3809-3818
    [36]
    Mu, C.J., Zhang, S.J., Yu, G.Z. et al. PLoS One, 8 (2013),p. e82264
    [37]
    Mullen, R.T., Lee, M.S., Trelease, R.N. Identification of the peroxisomal targeting signal for cottonseed catalase Plant J., 12 (1997),pp. 313-322
    [38]
    Platta, H.W., Erdmann, R. The peroxisomal protein import machinery FEBS Lett., 581 (2007),pp. 2811-2819
    [39]
    Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A. et al. Plant J., 52 (2007),pp. 640-657
    [40]
    Redinbaugh, M.G., Sabre, M., Scandalios, J.G. Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 6853-6857
    [41]
    Reumann, S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses Plant Physiol., 135 (2004),pp. 783-800
    [42]
    Reumann, S., Buchwald, D., Lingner, T. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins Front. Plant Sci., 3 (2012),p. 194
    [43]
    Reumann, S., Chowdhary, G., Lingner, T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s) Biochim. Biophys. Acta, 1863 (2016),pp. 790-803
    [44]
    Scharf, K.D., Siddique, M., Vierling, E. Cell Stress Chaperones, 6 (2001),pp. 225-237
    [45]
    Siddique, M., Gernhard, S., von Koskull-Doring, P. et al. Cell Stress Chaperones, 13 (2008),pp. 183-197
    [46]
    Skoulding, N.S., Chowdhary, G., Deus, M.J. et al. J. Mol. Biol., 427 (2015),pp. 1085-1101
    [47]
    Sun, W.N., Bernard, C., van de Cotte, B. et al. Plant J., 27 (2001),pp. 407-415
    [48]
    Sun, W.N., Van Montagu, M., Verbruggen, N. Small heat shock proteins and stress tolerance in plants Biochim. Biophys. Acta, 1577 (2002),pp. 1-9
    [49]
    Swinkels, B.W., Gould, S.J., Bodnar, A.G. et al. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase EMBO J., 10 (1991),pp. 3255-3262
    [50]
    Vanderauwera, S., Zimmermann, P., Rombauts, S. et al. Plant Physiol., 139 (2005),pp. 806-821
    [51]
    Verslues, P.E., Batelli, G., Grillo, S. et al. Mol. Cell Biol., 27 (2007),pp. 7771-7780
    [52]
    Vierling, E. The roles of heat-shock proteins in plants Annu. Rev. Plant Phys., 42 (1991),pp. 579-620
    [53]
    Waadt, R., Schmidt, L.K., Lohse, M. et al. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta Plant J., 56 (2008),pp. 505-516
    [54]
    Wadhwa, R., Ryu, J., Gao, R. et al. J. Biol. Chem., 285 (2010),pp. 3833-3839
    [55]
    Waters, E.R. The evolution, function, structure, and expression of the plant sHSPs J. Exp. Bot., 64 (2013),pp. 391-403
    [56]
    Waters, E.R., Aevermann, B.D., Sanders-Reed, Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns Cell Stress Chaperones, 13 (2008),pp. 127-142
    [57]
    Waters, E.R., Lee, G.J., Vierling, E. Evolution, structure and function of the small heat shock proteins in plants J. Exp. Bot., 47 (1996),pp. 325-338
    [58]
    Xing, H.L., Dong, L., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014),p. 327
    [59]
    Xing, Y., Jia, W.S., Zhangl, J.H. Plant J., 54 (2008),pp. 440-451
    [60]
    Xu, J., Duan, X., Yang, J. et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots Plant Physiol., 161 (2013),pp. 1517-1528
    [61]
    Yang, T., Poovaiah, B.W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 4097-4102
    [62]
    Yoo, S.D., Cho, Y.H., Sheen, J. Nat. Protoc., 2 (2007),pp. 1565-1572
    [63]
    Zimmermann, P., Heinlein, C., Orendi, G. et al. Plant Cell Environ., 29 (2006),pp. 1049-1060
    [64]
    Zou, J.J., Li, X.D., Ratnasekera, D. et al. Plant Cell, 27 (2015),pp. 1445-1460
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return