[1] |
Boratyn, G.M., Camacho, C., Cooper, P.S. et al. BLAST: a more efficient report with usability improvements Nucleic Acids Res., 41 (2013),pp. W29-W33
|
[2] |
Chen, Y., Sprung, R., Tang, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones Mol. Cell. Proteomics, 6 (2007),pp. 812-819
|
[3] |
Choudhary, C., Weinert, B.T., Nishida, Y. et al. The growing landscape of lysine acetylation links metabolism and cell signalling Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 536-550
|
[4] |
Dai, L., Peng, C., Montellier, E. et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark Nat. Chem. Biol., 10 (2014),pp. 365-370
|
[5] |
Deng, W., Wang, Y., Ma, L. et al. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins Brief. Bioinform. (2016),p. bbw041
|
[6] |
Elia, A.E., Boardman, A.P., Wang, D.C. et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response Mol. Cell, 59 (2015),pp. 867-881
|
[7] |
Flotho, A., Melchior, F. Sumoylation: a regulatory protein modification in health and disease Annu. Rev. Biochem., 82 (2013),pp. 357-385
|
[8] |
Geiss-Friedlander, R., Melchior, F. Concepts in sumoylation: a decade on Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 947-956
|
[9] |
Goodman, C. Post-translational modifications: considering conditions Nat. Chem. Biol., 9 (2013)
|
[10] |
Greer, E.L., Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance Nat. Rev. Genet., 13 (2012),pp. 343-357
|
[11] |
Hendriks, I.A., Vertegaal, A.C. A comprehensive compilation of SUMO proteomics Nat. Rev. Mol. Cell Biol., 17 (2016),pp. 581-595
|
[12] |
Hendriks, I.A., D'Souza, R.C., Yang, B. et al. Uncovering global SUMOylation signaling networks in a site-specific manner Nat. Struct. Mol. Biol., 21 (2014),pp. 927-936
|
[13] |
Hirschey, M.D., Zhao, Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation Mol. Cell. Proteomics, 14 (2015),pp. 2308-2315
|
[14] |
Hornbeck, P.V., Zhang, B., Murray, B. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations Nucleic Acids Res., 43 (2015),pp. D512-D520
|
[15] |
Huang, H., Lin, S., Garcia, B.A. et al. Quantitative proteomic analysis of histone modifications Chem. Rev., 115 (2015),pp. 2376-2418
|
[16] |
Lamoliatte, F., Caron, D., Durette, C. et al. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling Nat. Commun., 5 (2014),p. 5409
|
[17] |
Lanouette, S., Mongeon, V., Figeys, D. et al. The functional diversity of protein lysine methylation Mol. Syst. Biol., 10 (2014),p. 724
|
[18] |
Li, J., Jia, J., Li, H. et al. SysPTM 2.0: an updated systematic resource for post-translational modification Database, 2014 (2014),p. bau025
|
[19] |
Liu, Z., Cao, J., Gao, X. et al. CPLA 1.0: an integrated database of protein lysine acetylation Nucleic Acids Res., 39 (2011),pp. D1029-D1034
|
[20] |
Liu, Z., Wang, Y., Gao, T. et al. CPLM: a database of protein lysine modifications Nucleic Acids Res., 42 (2014),pp. D531-D536
|
[21] |
Lu, C.-T., Huang, K.-Y., Su, M.-G. et al. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications Nucleic Acids Res., 41 (2012),pp. D295-D305
|
[22] |
Mann, M., Jensen, O.N. Proteomic analysis of post-translational modifications Nat. Biotechnol., 21 (2003),pp. 255-261
|
[23] |
Mertins, P., Qiao, J.W., Patel, J. et al. Integrated proteomic analysis of post-translational modifications by serial enrichment Nat. Methods, 10 (2013),pp. 634-637
|
[24] |
Morris, M., Knudsen, G.M., Maeda, S. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice Nat. Neurosci., 18 (2015),pp. 1183-1189
|
[25] |
Olsen, J.V., Ong, S.-E., Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues Mol. Cell. Proteomics, 3 (2004),pp. 608-614
|
[26] |
Poulsen, C., Akhter, Y., Jeon, A.H.W. et al. Proteome‒wide identification of mycobacterial pupylation targets Mol. Syst. Biol., 6 (2010),p. 386
|
[27] |
Prasad, T.K., Goel, R., Kandasamy, K. et al. Human protein reference database‒2009 update Nucleic Acids Res., 37 (2009),pp. D767-D772
|
[28] |
Rabut, G., Peter, M. Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series EMBO. Rep., 9 (2008),pp. 969-976
|
[29] |
Sadhukhan, S., Liu, X., Ryu, D. et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 4320-4325
|
[30] |
Sadoul, K., Khochbin, S. The growing landscape of tubulin acetylation: lysine 40 and many more Biochem. J., 473 (2016),pp. 1859-1868
|
[31] |
Schwartz, D., Gygi, S.P. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets Nat. Biotechnol., 23 (2005),pp. 1391-1398
|
[32] |
Shaid, S., Brandts, C., Serve, H. et al. Ubiquitination and selective autophagy Cell Death Differ., 20 (2013),pp. 21-30
|
[33] |
Shannon, D.A., Weerapana, E. Covalent protein modification: the current landscape of residue-specific electrophiles Curr. Opin. Chem. Biol., 24 (2015),pp. 18-26
|
[34] |
Sharp, J.S., Nelson, S., Brown, D. et al. Structural characterization of the E2 glycoprotein from Sindbis by lysine biotinylation and LC-MS/MS Virology, 348 (2006),pp. 216-223
|
[35] |
Stes, E., Laga, M., Walton, A. et al. A COFRADIC protocol to study protein ubiquitination J. Proteome Res., 13 (2014),pp. 3107-3113
|
[36] |
Strzyz, P. Post-translational modifications: extension of the tubulin code Nat. Rev. Mol. Cell Biol., 17 (2016),p. 609
|
[37] |
Svinkina, T., Gu, H., Silva, J.C. et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow Mol. Cell. Proteomics, 14 (2015),pp. 2429-2440
|
[38] |
Tan, M., Luo, H., Lee, S. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification Cell, 146 (2011),pp. 1016-1028
|
[39] |
Tan, M., Peng, C., Anderson, K.A. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 Cell. Metab., 19 (2014),pp. 605-617
|
[40] |
UniProt Consortium UniProt: a hub for protein information Nucleic Acids Res., 43 (2015),pp. D204-D212
|
[41] |
Weinert, B.T., Schölz, C., Wagner, S.A. et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation Cell Rep., 4 (2013),pp. 842-851
|
[42] |
Xie, Z., Dai, J., Dai, L. et al. Lysine succinylation and lysine malonylation in histones Mol. Cell. Proteomics, 11 (2012),pp. 100-107
|
[43] |
Xiong, Y., Guan, K.-L. Mechanistic insights into the regulation of metabolic enzymes by acetylation J. Cell Biol., 198 (2012),pp. 155-164
|
[44] |
Xu, H.-D., Shi, S.-P., Wen, P.-P. et al. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy Bioinformatics, 31 (2015),pp. 3748-3750
|
[45] |
Xu, Y., Zhang, S., Lin, S. et al. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes Nucleic Acids Res., 45 (2016),pp. D264-D270
|
[46] |
Zhang, Z., Tan, M., Xie, Z. et al. Identification of lysine succinylation as a new post-translational modification Nat. Chem. Biol., 7 (2011),pp. 58-63
|