5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 4
Apr.  2017
Turn off MathJax
Article Contents

Temperature effect on CRISPR-Cas9 mediated genome editing

doi: 10.1016/j.jgg.2017.03.004
More Information
  • Corresponding author: E-mail address: wanghaoyi@ioz.ac.cn (Haoyi Wang)
  • Received Date: 2016-12-12
  • Accepted Date: 2017-03-06
  • Rev Recd Date: 2017-02-15
  • Available Online: 2017-03-30
  • Publish Date: 2017-04-20
  • Zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) are the most commonly used genome editing tools. Previous studies demonstrated that hypothermia treatment increased the mutation rates induced by ZFNs and TALENs in mammalian cells. Here, we characterize the effect of different culture temperatures on CRISPR-Cas9 mediated genome editing and find that the genome editing efficiency of CRISPR-Cas9 is significantly hampered by hypothermia treatment, unlike ZFN and TALEN. In addition, hyperthermia culture condition enhances genome editing by CRISPR-Cas9 in some cell lines, due to the higher enzyme activity and sgRNA expression level at higher temperature. Our study has implications on CRISPR-Cas9 applications in a broad spectrum of species, many of which do not live at 37°C.
  • loading
  • [1]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [2]
    Brinkman, E.K., Chen, T., Amendola, M. et al. Easy quantitative assessment of genome editing by sequence trace decomposition Nucleic Acids Res., 42 (2014),p. e168
    [3]
    Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 17382-17387
    [4]
    Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
    [5]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [6]
    Doudna, J.A., Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [7]
    Doyon, Y., Choi, V.M., Xia, D.F. et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption Nat. Methods, 7 (2010),pp. 459-460
    [8]
    Guschin, D.Y., Waite, A.J., Katibah, G.E. et al. A rapid and general assay for monitoring endogenous gene modification Methods Mol. Biol., 649 (2010),pp. 247-256
    [9]
    Hockemeyer, D., Soldner, F., Beard, C. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases Nat. Biotechnol., 27 (2009),pp. 851-857
    [10]
    Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [11]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [12]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [13]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [14]
    Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
    [15]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [16]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [17]
    Wang, W., Kutny, P.M., Byers, S.L. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation J. Genet. Genomics, 43 (2016),pp. 319-327
    [18]
    Wiles, M.V., Qin, W., Cheng, A.W. et al. CRISPR-Cas9-mediated genome editing and guide RNA design Mamm. Genome, 26 (2015),pp. 501-510
    [19]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return