[1] |
Alexander, D., Lombardi, R., Rodriguez, G. et al. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy Eur. J. Clin. Invest., 41 (2011),pp. 527-538
|
[2] |
Aronson, S.J., Rehm, H.L. Building the foundation for genomics in precision medicine Nature, 526 (2015),pp. 336-342
|
[3] |
Arumugam, M., Raes, J., Pelletier, E. et al. Enterotypes of the human gut microbiome Nature, 473 (2011),pp. 174-180
|
[4] |
Athey, B.D., Braxenthaler, M., Haas, M. et al. tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research AMIA Jt. Summits Transl. Sci. Proc., 2013 (2013),pp. 6-8
|
[5] |
Baig, F., Pechlaner, R., Mayr, M. Caveats of untargeted metabolomics for biomarker discovery J. Am. Coll. Cardiol., 68 (2016),pp. 1294-1296
|
[6] |
Becker, S., Kortz, L., Helmschrodt, C. et al. LC–MS-based metabolomics in the clinical laboratory J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 883–884 (2012),pp. 68-75
|
[7] |
Brown, J.M., Hazen, S.L. Metaorganismal nutrient metabolism as a basis of cardiovascular disease Curr. Opin. Lipidol., 25 (2014),pp. 48-53
|
[8] |
Brown, J.M., Hazen, S.L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases Annu. Rev. Med., 66 (2015),pp. 343-359
|
[9] |
Charach, G., Grosskopf, I., Rabinovich, A. et al. The association of bile acid excretion and atherosclerotic coronary artery disease Ther. Adv. Gastroenterol., 4 (2011),pp. 95-101
|
[10] |
Charach, G., Rabinovich, A., Argov, O. et al. The role of bile acid excretion in atherosclerotic coronary artery disease Int. J. Vasc. Med., 2012 (2012),p. 949672
|
[11] |
Chen, X., Liu, L., Palacios, G. et al. Plasma metabolomics reveals biomarkers of the atherosclerosis J. Sep. Sci., 33 (2010),pp. 2776-2783
|
[12] |
Cheng, M.L., Wang, C.H., Shiao, M.S. et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics J. Am. Coll. Cardiol., 65 (2015),pp. 1509-1520
|
[13] |
Ciborowski, M., Martin-Ventura, J.L., Meilhac, O. et al. Metabolites secreted by human atherothrombotic aneurysms revealed through a metabolomic approach J. Proteome Res., 10 (2011),pp. 1374-1382
|
[14] |
Collins, F.S., Varmus, H. A new initiative on precision medicine New Engl. J. Med., 372 (2015),pp. 793-795
|
[15] |
Consortium, C.A.D., Deloukas, P., Kanoni, S. et al. Large-scale association analysis identifies new risk loci for coronary artery disease Nat. Genet., 45 (2013),pp. 25-33
|
[16] |
de Couto, G., Ouzounian, M., Liu, P.P. Early detection of myocardial dysfunction and heart failure Nat. Rev. Cardiol., 7 (2010),pp. 334-344
|
[17] |
Demirkan, A., van Duijn, C.M., Ugocsai, P. et al. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations PLoS Genet., 8 (2012),p. e1002490
|
[18] |
Dunn, W.B., Broadhurst, D.I., Deepak, S.M. et al. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate Metabolomics, 3 (2007),pp. 413-426
|
[19] |
Ellero-Simatos, S., Lewis, J.P., Georgiades, A. et al. Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability CPT Pharm. Syst. Pharmacol., 3 (2014),p. e125
|
[20] |
Fan, Y., Li, Y., Chen, Y. et al. Comprehensive metabolomic characterization of coronary artery diseases J. Am. Coll. Cardiol., 68 (2016),pp. 1281-1293
|
[21] |
Golledge, J., Tsao, P.S., Dalman, R.L. et al. Circulating markers of abdominal aortic aneurysm presence and progression Circulation, 118 (2008),pp. 2382-2392
|
[22] |
Griffin, J.L., Atherton, H., Shockcor, J. et al. Metabolomics as a tool for cardiac research Nat. Rev. Cardiol., 8 (2011),pp. 630-643
|
[23] |
Hicks, A.A., Pramstaller, P.P., Johansson, A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations PLoS Genet., 5 (2009),p. e1000672
|
[24] |
Hutchins, P.M., Moore, E.E., Murphy, R.C. Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in human peripheral vascular lesions J. Lipid Res., 52 (2011),pp. 2070-2083
|
[25] |
Jameson, J.L., Longo, D.L. Precision medicine–personalized, problematic, and promising N. Engl. J. Med., 372 (2015),pp. 2229-2234
|
[26] |
Kantor, P.F., Lucien, A., Kozak, R. et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase Circ. Res., 86 (2000),pp. 580-588
|
[27] |
Koeth, R.A., Wang, Z., Levison, B.S. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis Nat. Med., 19 (2013),pp. 576-585
|
[28] |
Korman, A., Oh, A., Raskind, A. et al. Statistical methods in metabolomics Methods Mol. Biol., 856 (2012),pp. 381-413
|
[29] |
Krauss, R.M., Zhu, H., Kaddurah-Daouk, R. Pharmacometabolomics of statin response Clin. Pharmacol. Ther., 94 (2013),pp. 562-565
|
[30] |
Lam, S.M., Chua, G.H., Li, X.J. et al. Oncotarget, 7 (2016),pp. 55970-55989
|
[31] |
Lam, S.M., Shui, G. Lipidomics as a principal tool for advancing biomedical research J. Genet. Genomics, 40 (2013),pp. 375-390
|
[32] |
Lam, S.M., Tian, H., Shui, G. Lipidomics, en route to accurate quantitation Biochim. Biophys. Acta (2017)
|
[33] |
Lam, S.M., Tong, L., Duan, X. et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles J. Lipid Res., 55 (2014),pp. 289-298
|
[34] |
Lam, S.M., Wang, Y., Duan, X. et al. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia Neurobiol. Aging, 35 (2014),pp. 2369-2381
|
[35] |
Lavi, S., McConnell, J.P., Rihal, C.S. et al. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: association with early coronary atherosclerosis and endothelial dysfunction in humans Circulation, 115 (2007),pp. 2715-2721
|
[36] |
Li, N., Liu, J.Y., Qiu, H. et al. Use of metabolomic profiling in the study of arachidonic acid metabolism in cardiovascular disease Congest. Heart Fail., 17 (2011),pp. 42-46
|
[37] |
Li, N., Liu, J.Y., Timofeyev, V. et al. Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches J. Mol. Cell. Cardiol., 47 (2009),pp. 835-845
|
[38] |
Lin, H., Zhang, J., Gao, P. Silent myocardial ischemia is associated with altered plasma phospholipids J. Clin. Lab. Anal., 23 (2009),pp. 45-50
|
[39] |
Liu, J.Y., Li, N., Yang, J. et al. Metabolic profiling of murine plasma reveals an unexpected biomarker in rofecoxib-mediated cardiovascular events Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 17017-17022
|
[40] |
Lu, X., Wang, L., Chen, S. et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease Nat. Genet., 44 (2012),pp. 890-894
|
[41] |
Lu, Y., Feskens, E.J., Boer, J.M. et al. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population Atherosclerosis, 210 (2010),pp. 14-27
|
[42] |
Mas, S., Martinez-Pinna, R., Martin-Ventura, J.L. et al. Local non-esterified fatty acids correlate with inflammation in atheroma plaques of patients with type 2 diabetes Diabetes, 59 (2010),pp. 1292-1301
|
[43] |
Meikle, P.J., Wong, G., Tsorotes, D. et al. Plasma lipidomic analysis of stable and unstable coronary artery disease Arterioscler. Thromb. Vasc. Biol., 31 (2011),pp. 2723-2732
|
[44] |
Millington, D.S., Stevens, R.D. Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry Methods Mol. Biol., 708 (2011),pp. 55-72
|
[45] |
Oni-Orisan, A., Edin, M.L., Lee, J.A. et al. Cytochrome P450-derived epoxyeicosatrienoic acids and coronary artery disease in humans: a targeted metabolomics study J. Lipid Res., 57 (2016),pp. 109-119
|
[46] |
Podrez, E.A., Poliakov, E., Shen, Z. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36 J. Biol. Chem., 277 (2002),pp. 38503-38516
|
[47] |
Pols, T.W., Nomura, M., Harach, T. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading Cell Metab., 14 (2011),pp. 747-757
|
[48] |
Qin, J., Li, R., Raes, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing Nature, 464 (2010),pp. 59-65
|
[49] |
Rajaratnam, R.A., Gylling, H., Miettinen, T.A. Cholesterol absorption, synthesis, and fecal output in postmenopausal women with and without coronary artery disease Arterioscler. Thromb. Vasc. Biol., 21 (2001),pp. 1650-1655
|
[50] |
Rasmiena, A.A., Ng, T.W., Meikle, P.J. Metabolomics and ischaemic heart disease Clin. Sci., 124 (2013),pp. 289-306
|
[51] |
Relling, M.V., Evans, W.E. Pharmacogenomics in the clinic Nature, 526 (2015),pp. 343-350
|
[52] |
Repa, J.J., Mangelsdorf, D.J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis Annu. Rev. Cell Dev. Biol., 16 (2000),pp. 459-481
|
[53] |
Rhee, E.P., Gerszten, R.E. Metabolomics and cardiovascular biomarker discovery Clin. Chem., 58 (2012),pp. 139-147
|
[54] |
Sabatine, M.S., Liu, E., Morrow, D.A. et al. Metabolomic identification of novel biomarkers of myocardial ischemia Circulation, 112 (2005),pp. 3868-3875
|
[55] |
Salonen, J.T., Nyyssonen, K., Salonen, R. et al. Lipoprotein oxidation and progression of carotid atherosclerosis Circulation, 95 (1997),pp. 840-845
|
[56] |
Scheufele, E., Aronzon, D., Coopersmith, R. et al. tranSMART: an open source knowledge management and high content data analytics platform AMIA Jt. Summits Transl. Sci. Proc., 2014 (2014),pp. 96-101
|
[57] |
Shah, S.H., Sun, J.L., Stevens, R.D. et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease Am. Heart J., 163 (2012),pp. 844-850
|
[58] |
Shui, G., Stebbins, J.W., Lam, B.D. et al. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys? PLoS One, 6 (2011),p. e19731
|
[59] |
Shui, G.H., Lam, S.M., Stebbins, J. et al. Polar lipid derangements in type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids Metabolomics, 9 (2013),pp. 786-799
|
[60] |
Stanley WC, L.G., Hall, J.L., McCormack, J.G. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions Cardiovasc. Res., 33 (1997),p. 14
|
[61] |
Stegemann, C., Drozdov, I., Shalhoub, J. et al. Comparative lipidomics profiling of human atherosclerotic plaques Circ. Cardiovasc. Genet., 4 (2011),pp. 232-242
|
[62] |
Stewart, N.A., Buch, S.C., Conrads, T.P. et al. A UPLC-MS/MS assay of the “Pittsburgh cocktail”: six CYP probe-drug/metabolites from human plasma and urine using stable isotope dilution Analyst, 136 (2011),pp. 605-612
|
[63] |
Storey, J.D., Tibshirani, R. Statistical significance for genomewide studies Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 9440-9445
|
[64] |
Sugimoto, M., Kawakami, M., Robert, M. et al. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis Curr. Bioinform., 7 (2012),pp. 96-108
|
[65] |
Sun, L., Zhang, X., He, L. GWAS promotes precision medicine in China J. Genet. Genomics, 43 (2016),pp. 477-479
|
[66] |
Thukkani, A.K., McHowat, J., Hsu, F.F. et al. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions Circulation, 108 (2003),pp. 3128-3133
|
[67] |
Tian, H., Lam, S.M., Shui, G. Metabolomics, a powerful tool for agricultural research Int. J. Mol. Sci., 17 (2016)
|
[68] |
Turer, A.T., Stevens, R.D., Bain, J.R. et al. Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion Circulation, 119 (2009),pp. 1736-1746
|
[69] |
Voora, D., Shah, S.H. Pharmacometabolomics meets genetics: a “natural” clinical trial of statin effects J. Am. Coll. Cardiol., 67 (2016),pp. 1211-1213
|
[70] |
Wang, F., Xu, C.Q., He, Q. et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population Nat. Genet., 43 (2011),pp. 345-349
|
[71] |
Wang, Z., Klipfell, E., Bennett, B.J. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease Nature, 472 (2011),pp. 57-63
|
[72] |
Wang, Z., Tang, W.H., Buffa, J.A. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide Eur. Heart J., 35 (2014),pp. 904-910
|
[73] |
Winter, G., Kromer, J.O. Fluxomics–connecting 'omics analysis and phenotypes Environ. Microbiol., 15 (2013),pp. 1901-1916
|
[74] |
Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine Nat. Rev. Drug Discov., 15 (2016),pp. 473-484
|
[75] |
Wurtz, P., Wang, Q., Soininen, P. et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase J. Am. Coll. Cardiol., 67 (2016),pp. 1200-1210
|
[76] |
Xu, D., Li, N., He, Y. et al. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 18733-18738
|
[77] |
Yan, J., Young, M.E., Cui, L. et al. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity Circulation, 119 (2009),pp. 2818-2828
|
[78] |
Yang, Z.J., Liu, J., Ge, J.P. et al. Prevalence of cardiovascular disease risk factor in the Chinese population: the 2007‒2008 China National diabetes and metabolic disorders study Eur. Heart J., 33 (2012),pp. 213-220
|
[79] |
Yao, X., Sa, R., Ye, C. et al. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: a targeted metabolomic approach Prostagl. Other Lipid Mediat., 118–119 (2015),pp. 11-18
|
[80] |
Zhang, X., Yang, N., Ai, D. et al. Systematic metabolomic analysis of eicosanoids after omega-3 polyunsaturated fatty acid supplementation by a highly specific liquid chromatography-tandem mass spectrometry-based method J. Proteome Res., 14 (2015),pp. 1843-1853
|
[81] |
Zhang, X., Zhang, D., Jia, H. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment Nat. Med., 21 (2015),pp. 895-905
|