5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 2
Feb.  2017
Turn off MathJax
Article Contents

LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice

doi: 10.1016/j.jgg.2016.12.005
More Information
  • Corresponding author: E-mail address: ghjiang@genetics.ac.cn (Guanghuai Jiang); E-mail address: wxzhai@genetics.ac.cn (Wenxue Zhai)
  • Received Date: 2016-11-15
  • Accepted Date: 2016-12-26
  • Rev Recd Date: 2016-12-22
  • Available Online: 2016-12-27
  • Publish Date: 2017-02-20
  • Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abbas, W., Kumar, A., Herbein, G. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections Front. Oncol., 5 (2015),p. 75
    [2]
    Abe, H., Urao, T., Ito, T. et al. Plant Cell, 15 (2003),pp. 63-78
    [3]
    Audic, S., Claverie, J.-M. The significance of digital gene expression profiles Genome Res., 7 (1997),pp. 986-995
    [4]
    Balagué, C., Lin, B., Alcon, C. et al. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide–gated channel ion channel family Plant Cell, 15 (2003),pp. 365-379
    [5]
    Browning, K.S.
    [6]
    Bruggeman, Q., Raynaud, C., Benhamed, M. et al. To die or not to die? Lessons from lesion mimic mutants Front. Plant Sci., 6 (2015),p. 24
    [7]
    Chang, R., Wang, E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress J. Cell. Biochem., 100 (2007),pp. 267-278
    [8]
    Chen, H., Li, C., Liu, L. et al. Sci. Rep., 6 (2016),p. 26411
    [9]
    Chen, X., Hao, L., Pan, J. et al. Mol. Breed., 30 (2012),pp. 939-949
    [10]
    Dangl, J.L., Dietrich, R.A., Richberg, M.H. Death don't have no mercy: cell death programs in plant-microbe interactions Plant Cell, 8 (1996),p. 1793
    [11]
    Dietrich, R.A., Delaney, T.P., Uknes, S.J. et al. Cell, 77 (1994),pp. 565-577
    [12]
    Dietrich, R.A., Richberg, M.H., Schmidt, R. et al. Cell, 88 (1997),pp. 685-694
    [13]
    Frye, C.A., Tang, D., Innes, R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase Proc. Nat. Acad. Sci. U. S. A., 98 (2001),pp. 373-378
    [14]
    Greenberg, J.T., Silverman, F.P., Liang, H. Genetics, 156 (2000),pp. 341-350
    [15]
    Hoshino, S.i. Mechanism of the initiation of mRNA decay: role of eRF3 family G proteins Wiley Interdiscip. Rev. RNA, 3 (2012),pp. 743-757
    [16]
    Hu, G., Yalpani, N., Briggs, S.P. et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize Plant Cell, 10 (1998),pp. 1095-1105
    [17]
    Huang, X., Li, J., Bao, F. et al. Plant Physiol., 154 (2010),pp. 796-809
    [18]
    Ishikawa, A., Okamoto, H., Iwasaki, Y. et al. Plant J., 27 (2001),pp. 89-99
    [19]
    Jiang, C.-J., Shimono, M., Maeda, S. et al. Mol. Plant Microbe Interact., 22 (2009),pp. 820-829
    [20]
    Kauffman, H., Reddy, A., Hsieh, S. et al. Plant Dis. Rep., 57 (1973),pp. 737-741
    [21]
    Kidou, S.-i., Ejiri, S.-i. Plant Mol. Biol., 36 (1998),pp. 137-148
    [22]
    Kim, J.-A., Cho, K., Singh, R. et al. Mol. Cells, 28 (2009),pp. 431-439
    [23]
    Kumar, K., Maruthasalam, S., Loganathan, M. et al. Plant Mol. Biol. Rep., 23 (2005),pp. 67-73
    [24]
    La Camera, S., Gouzerh, G., Dhondt, S. et al. Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways Immunol. Rev., 198 (2004),pp. 267-284
    [25]
    Lee, J.-Y., Park, S.H., Jeong, B.-C. et al. Acta Crystallogr. F. Struct. Biol. Commun., 70 (2014),pp. 1252-1255
    [26]
    Lin, A., Wang, Y., Tang, J. et al. Plant Physiol., 158 (2012),pp. 451-464
    [27]
    Lorrain, S., Lin, B., Auriac, M.C. et al. Plant Cell, 16 (2004),pp. 2217-2232
    [28]
    Lorrain, S., Vailleau, F., Balagué, C. et al. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci., 8 (2003),pp. 263-271
    [29]
    Lu, F., Wang, H., Wang, S. et al. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR J. Integr. Plant Biol., 57 (2015),pp. 641-652
    [30]
    Mateyak, M.K., Kinzy, T.G. eEF1A: thinking outside the ribosome J. Biol. Chem., 285 (2010),pp. 21209-21213
    [31]
    Moeder, W., Yoshioka, K. Lesion mimic mutants: a classical, yet still fundamental approach to study programmed cell death Plant Signal. Behav., 3 (2008),pp. 764-767
    [32]
    Mori, M., Tomita, C., Sugimoto, K. et al. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice Plant Mol. Biol., 63 (2007),pp. 847-860
    [33]
    Morishima, A. Identification of preferred binding sites of a light-inducible DNA-binding factor (MNF1) within 5′-upstream sequence of C4-type phosphoenolpyruvate carboxylase gene in maize Plant Mol. Biol., 38 (1998),pp. 633-646
    [34]
    Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods, 5 (2008),pp. 621-628
    [35]
    Mosher, S., Moeder, W., Nishimura, N. et al. Plant Physiol., 152 (2010),pp. 1901-1913
    [36]
    Negrutskii, B., El’Skaya, A. Eukaryotic translation elongation factor 1α: structure, expression, functions, and possible role in aminoacyl-tRNA channeling Prog. Nucleic Acid. Res. Mol. Biol., 60 (1998),pp. 47-78
    [37]
    Noutoshi, Y., Ito, T., Seki, M. et al. Plant J., 43 (2005),pp. 873-888
    [38]
    Noutoshi, Y., Kuromori, T., Wada, T. et al. Plant Mol. Biol., 62 (2006),pp. 29-42
    [39]
    Nyborg, J., Liljas, A. Protein biosynthesis: structural studies of the elongation cycle FEBS Lett., 430 (1998),pp. 95-99
    [40]
    Okada, A., Okada, K., Miyamoto, K. et al. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice J. Biol. Chem., 284 (2009),pp. 26510-26518
    [41]
    Petersen, N.H., McKinney, L.V., Pike, H. et al. FEBS J., 275 (2008),pp. 4378-4388
    [42]
    Qiao, Y., Jiang, W., Lee, J. et al. New Phytol., 185 (2010),pp. 258-274
    [43]
    Quesada, V., Sarmiento-Mañús, R., González-Bayón, R. et al. PLoS One, 8 (2013),p. e53378
    [44]
    Rostoks, N., Schmierer, D., Mudie, S. et al. Mol. Genet. Genomics, 275 (2006),pp. 159-168
    [45]
    Songbai, Z., Zhenguo, D., Liang, Y. et al. Identification and characterization of the interaction between viroplasm-associated proteins from two different plant-infecting reoviruses and eEF-1A of rice Arch. Virol., 158 (2013),pp. 2031-2039
    [46]
    Sun, C., Liu, L., Tang, J. et al. J. Genet. Genomics, 38 (2011),pp. 29-37
    [47]
    Takahashi, A., Agrawal, G.K., Yamazaki, M. et al. Plant Cell, 19 (2007),pp. 2940-2951
    [48]
    Takahashi, A., Kawasaki, T., Henmi, K. et al. Lesion mimic mutants of rice with alterations in early signaling events of defense Plant J., 17 (1999),pp. 535-545
    [49]
    Tamiru, M., Takagi, H., Abe, A. et al. A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice New Phytol., 210 (2016),pp. 1282-1297
    [50]
    Tang, J., Zhu, X., Wang, Y. et al. Plant J., 66 (2011),pp. 996-1007
    [51]
    Thordal-Christensen, H., Zhang, Z., Wei, Y. et al. Plant J., 11 (1997),pp. 1187-1194
    [52]
    Wang, J., Ye, B., Yin, J. et al. Plant Physiol. Biochem., 97 (2015),pp. 44-51
    [53]
    Wang, L., Pei, Z., Tian, Y. et al. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation Mol. Plant Microbe Interact., 18 (2005),pp. 375-384
    [54]
    Wang, S.-H., Lim, J.-H., Kim, S.-S. et al. J. Exp. Bot., 66 (2015),pp. 7045-7059
    [55]
    Wang, W., Yang, X., Tangchaiburana, S. et al. Plant Cell, 20 (2008),pp. 3163-3179
    [56]
    Wang, Z., Chen, C., Xu, Y. et al. Plant Mol. Biol. Rep., 22 (2004),pp. 409-417
    [57]
    Wu, J., Mao, X., Cai, T. et al. KOBAS server: a web-based platform for automated annotation and pathway identification Nucleic Acids Res., 34 (2006),pp. W720-W724
    [58]
    Yamanouchi, U., Yano, M., Lin, H. et al. Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 7530-7535
    [59]
    Zeng, L.-R., Qu, S., Bordeos, A. et al. Plant Cell, 16 (2004),pp. 2795-2808
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return