5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

Drug resistance mechanisms and novel drug targets for tuberculosis therapy

doi: 10.1016/j.jgg.2016.10.002
More Information
  • Corresponding author: E-mail address: zhang_tianyu@gibh.ac.cn (Tianyu Zhang)
  • Received Date: 2016-07-13
  • Accepted Date: 2016-10-10
  • Rev Recd Date: 2016-09-26
  • Available Online: 2016-10-11
  • Publish Date: 2017-01-20
  • Drug - resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti - TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti - TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug - resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti - TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti - TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.
  • loading
  • [1]
    Abrahams, K.A., Cox, J.A., Spivey, V.L. et al. PLoS One, 7 (2012),p. e52951
    [2]
    Ajbani, K., Rodrigues, C., Shenai, S. et al. Mutation detection and accurate diagnosis of extensively drug-resistant tuberculosis: report from a tertiary care center in India J. Clin. Microbiol., 49 (2011),pp. 1588-1590
    [3]
    Alahari, A., Trivelli, X., Guérardel, Y. et al. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria PLoS One, 2 (2007),p. e1343
    [4]
    Alangaden, G.J., Kreiswirth, B.N., Aouad, A. et al. Antimicrob. Agents Chemother., 42 (1998),pp. 1295-1297
    [5]
    Alexander, D.C., Ma, J.H., Guthrie, J.L. et al. J. Clin. Microbiol., 50 (2012),pp. 3726-3728
    [6]
    Allegui, Z., Ghariani, A., Draoui, H. et al. Int. J. Mycobacteriol., 1 (2012),pp. 34-39
    [7]
    Almeida, D., Ioerger, T., Tyagi, S. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 4590-4599
    [8]
    Alvarez, N., Zapata, E., Mejía, G.I. et al. BioMed. Res. Int., 2014 (2014),pp. 367-368
    [9]
    An, D.D., Duyen, N.T.H., Lan, N.T.N. et al. Antimicrob. Agents Chemother., 53 (2009),pp. 4835-4839
    [10]
    Andres, S., Hillemann, D., Rüsch-Gerdes, S. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 590-592
    [11]
    Andries, K., Verhasselt, P., Guillemont, J. et al. Science, 307 (2005),pp. 223-227
    [12]
    Andries, K., Villellas, C., Coeck, N. et al. PLoS One, 9 (2014),p. e102135
    [13]
    Arbex, M.A., Varella, M.D.C.L., Siqueira, H.R.D. et al. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations-part 1: first-line drugs J. Bras. Pneumol., 36 (2010),pp. 626-640
    [14]
    Awasthi, D., Kumar, K., Knudson, S.E. et al. J. Med. Chem., 56 (2013)
    [15]
    Aye, K.S., Nakajima, C., Yamaguchi, T. et al. J. Infect. Chemother., 22 (2016),pp. 174-179
    [16]
    Banerjee, A., Dubnau, E., Quemard, A. et al. Science, 263 (1994),pp. 227-229
    [17]
    Bantubani, N., Kabera, G., Connolly, C. et al. High rates of potentially infectious tuberculosis and multidrug-resistant tuberculosis (MDR-TB) among hospital inpatients in KwaZulu Natal, South Africa indicate risk of nosocomial transmission PLoS One, 9 (2014),p. e90868
    [18]
    Baulard, A.R., Betts, J.C., Engohang-Ndong, J. et al. Activation of the pro-drug ethionamide is regulated in mycobacteria J. Biol. Chem., 275 (2000),pp. 28326-28331
    [19]
    Beckert, P., Hillemann, D., Kohl, T.A. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 2743-2745
    [20]
    Belanger, A.E., Besra, G.S., Ford, M.E. et al. Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 11919-11924
    [21]
    Bhuju, S., de Souza Fonseca, L., Marsico, A.G. et al. Infect. Genet. Evol., 19 (2013),pp. 1-6
    [22]
    Blanchard, J.S. Annu. Rev. Biochem., 65 (1996),pp. 215-239
    [23]
    Bloemberg, G.V., Keller, P.M., Stucki, D. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis N. Engl. J. Med., 373 (2015),pp. 1986-1988
    [24]
    Boonaiam, S., Chaiprasert, A., Prammananan, T. et al. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand Clin. Microbiol. Infect., 16 (2010),pp. 396-399
    [25]
    Brossier, F., Sougakoff, W., Bernard, C. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 4800-4808
    [26]
    Bruning, J.B., Murillo, A.C., Chacon, O. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 291-301
    [27]
    Caceres, N.E., Harris, N.B., Wellehan, J.F. et al. J. Bacteriol., 179 (1997),pp. 5046-5055
    [28]
    Campbell, P.J., Morlock, G.P., Sikes, R.D. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 2032-2041
    [29]
    Carette, X., Blondiaux, N., Willery, E. et al. Nucleic Acids Res., 40 (2011),pp. 3018-3030
    [30]
    Casali, N., Nikolayevskyy, V., Balabanova, Y. et al. Evolution and transmission of drug resistant tuberculosis in a Russian population Nat. Genet., 46 (2014),p. 279
    [31]
    CDC Treatment of tuberculosis, morbidity and mortality weekly report Recommen. Rep., 52 (2003),pp. 1-77
    [32]
    Chang, K.C., Yew, W.W., Tam, C.M. et al. WHO group 5 drugs and difficult multidrug-resistant tuberculosis: a systematic review with cohort analysis and meta-analysis Antimicrob. Agents Chemother., 57 (2013),pp. 4097-4104
    [33]
    Chen, J.M., Uplekar, S., Gordon, S.V. et al. PLoS One, 7 (2012),p. e43467
    [34]
    Chen, Q., Pang, Y., Liang, Q. et al. Tuberculosis, 94 (2014),pp. 159-161
    [35]
    China, A., Mishra, S., Tare, P. et al. J. Bacteriol., 194 (2012),pp. 1009-1017
    [36]
    Cohen, K.A., Abeel, T., McGuire, A.M. et al. PLoS Med., 12 (2015),p. e1001880
    [37]
    Cholo, M.C., Steel, H.C., Fourie, P.B. et al. Clofazimine: current status and future prospects J. Antimicrob. Chemother., 67 (2012),pp. 290-298
    [38]
    Comas, I., Borrell, S., Roetzer, A. et al. Nat. Genet., 44 (2012),pp. 106-110
    [39]
    Pay dirt: the story of streptomycin. Part I: from Waksman to Waksman Am. Rev. Respir. Dis., 117 (1978),pp. 773-781
    [40]
    Cooksey, R.C., Morlock, G.P., McQueen, A. et al. Antimicrob. Agents Chemother., 40 (1996),pp. 1186-1188
    [41]
    Cuevas-Córdoba, B., Cuellar-Sánchez, A., Pasissi-Crivelli, A. et al. J. Microbiol. Immunol. Infect., 46 (2013),pp. 30-34
    [42]
    Cuevas-Córdoba, B., Juárez-Eusebio, D.M., Almaraz-Velasco, R. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 5455-5462
    [43]
    Cui, Z., Wang, J., Lu, J. et al. BMC Infect. Dis., 11 (2011),p. 78
    [44]
    Cynamon, M.H., Sklaney, M. Gatifloxacin and ethionamide asthe foundation for therapy of tuberculosis Antimicrob. Agents Chemother., 47 (2003),pp. 2442-2444
    [45]
    D'Ambrosio, L., Centis, R., Sotgiu, G. et al. New anti-tuberculosis drugs and regimens: 2015 update E.R.J. Open Res., 1 (2015),pp. 00010-02015
    [46]
    Datta, G., Nieto, L.M., Davidson, R.M. et al. Tuberculosis, 98 (2016),pp. 50-55
    [47]
    DeBarber, A.E., Mdluli, K., Bosman, M. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 9677-9682
    [48]
    Desjardins, C.A., Cohen, K.A., Munsamy, V. et al. Nat. Genet., 48 (2016),pp. 544-551
    [49]
    Dessen, A., Quemard, A., Blanchard, J.S. et al. Science, 267 (1995),pp. 1638-1641
    [50]
    Devasia, R., Blackman, A., Eden, S. et al. J. Clin. Microbiol., 50 (2011),pp. 1390-1396
    [51]
    Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F. et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline Am. J. Respir. Crit. Care Med., 191 (2015),pp. 943-953
    [52]
    Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F. et al. 14-day bactericidal activity of Prm, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial Lancet, 380 (2012),pp. 986-993
    [53]
    Diacon, A.H., Pym, A., Grobusch, M. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis N. Engl. J. Med., 360 (2009)
    [54]
    Diacon, A.H., Pym, A., Grobusch, M.P. et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline N. Engl. J. Med., 371 (2014),pp. 723-732
    [55]
    Dillon, N.A., Peterson, N.D., Rosen, B.C. et al. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide Antimicrob. Agents Chemother., 58 (2014),pp. 7258-7263
    [56]
    Du, Q., Dai, G., Long, Q. et al. Diagn. Microbiol. Infect. Dis., 77 (2013),pp. 138-142
    [57]
    Dye, C., Williams, B.G., Espinal, M.A. et al. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis Science, 295 (2002),pp. 2042-2046
    [58]
    Eldholm, V., Monteserin, J., Rieux, A. et al. Nat. Commun., 6 (2015),p. 7119
    [59]
    Engström, A., Morcillo, N., Imperiale, B. et al. J. Clin. Microbiol., 50 (2012),pp. 2026-2033
    [60]
    Engström, A., Perskvist, N., Werngren, J. et al. J. Antimicrob. Chemother., 66 (2011),pp. 1247-1254
    [61]
    Evans, J., Segal, H. J. Antimicrob. Chemother., 65 (2010)
    [62]
    Farhat, M.R., Shapiro, B.J., Kieser, K.J. et al. Nat. Genet., 45 (2013),pp. 1183-1189
    [63]
    Falzon, D., Jaramillo, E., Schünemann, H.J. et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update Eur. Respir. J., 38 (2011),pp. 516-528
    [64]
    Feng, Y., Liu, S., Wang, Q. et al. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis PLoS One, 8 (2013),p. e55292
    [65]
    Feng, Z., Barletta, R.G. Antimicrob. Agents Chemother., 47 (2003),pp. 283-291
    [66]
    Feuerriegel, S., Köser, C.U., Baù, D. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 5718-5722
    [67]
    Ford, C.B., Shah, R.R., Maeda, M.K. et al. Nat. Genet., 45 (2013),pp. 784-790
    [68]
    Gao, P., Yang, Y., Xiao, C. et al. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria Eur. J. Pharmacol., 694 (2012),pp. 45-52
    [69]
    Gavalda, S., Léger, M., van der Rest, B. et al. J. Biol. Chem., 284 (2009),pp. 19255-19264
    [70]
    Gellert, M., Mizuuchi, K., O'Dea, M.H. et al. DNA gyrase: an enzyme that introduces superhelical turns into DNA Proc. Natl. Acad. Sci. U. S. A., 73 (1976),pp. 3872-3876
    [71]
    Gikalo, M.B., Nosova, E.Y., Krylova, L.Y. et al. J. Antimicrob. Chemother., 67 (2012),pp. 2107-2109
    [72]
    Gillespie, S.H. Antimicrob. Agents Chemother., 46 (2002),pp. 267-274
    [73]
    Ginsberg, A.M., Laurenzi, M.W., Rouse, D.J. et al. Safety, tolerability, and pharmacokinetics of Prm in healthy subjects Antimicrob. Agents Chemother., 53 (2009)
    [74]
    Ginsburg, A.S., Woolwine, S.C., Hooper, N. et al. N. Engl. J. Med., 349 (2003),pp. 1977-1978
    [75]
    Glickman, M.S., Cahill, S.M., Jacobs, W.R. J. Biol. Chem., 276 (2001),pp. 2228-2233
    [76]
    Glickman, M.S., Cox, J.S., Jacobs, W.R. Mol. Cell, 5 (2000),pp. 717-727
    [77]
    Gothi, D., Joshi, J.M. Resistant TB newer drugs and community approach Recent Pat. Anti-infect. Drug Discov., 6 (2011),pp. 27-37
    [78]
    Grosset, J.H., Singer, T.G., Bishai, W.R. New drugs for the treatment of tuberculosis: hope and reality Int. J. Tuberc. Lung Dis., 16 (2012),pp. 1005-1014
    [79]
    Grosset, J.H., Tyagi, S., Almeida, D.V. et al. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice Am. J. Respir. Crit. Care Med., 188 (2013),pp. 608-612
    [80]
    Grzegorzewicz, A.E., Pham, H., Gundi, V.A. et al. Nat. Chem. Biol., 8 (2012),pp. 334-341
    [81]
    Gu, Y., Yu, X., Jiang, G. et al. Diagn. Microbiol. Infect. Dis., 84 (2016),pp. 207-211
    [82]
    Guerrero, E., Lemus, D., Yzquierdo, S. et al. Rev. Argent. Microbiol., 45 (2013),pp. 21-26
    [83]
    Gupta, R., Lavollay, M., Mainardi, J.L. et al. Nat. Med., 16 (2010),pp. 466-469
    [84]
    Hamze, M., Ismail, M.B., Rahmo, A.K. et al. Pyrosequencing for rapid detection of tuberculosis resistance to rifampicin and isoniazid in Syrian and Lebanese clinical isolates Int. J. Mycobacteriol., 4 (2015)
    [85]
    Hartkoorn, R.C., Uplekar, S., Cole, S.T. Antimicrob. Agents Chemother., 58 (2014),pp. 2979-2981
    [86]
    Haver, H.L., Chua, A., Ghode, P. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 5316-5323
    [87]
    Hazbón, M.H., Brimacombe, M., del Valle, M.B. et al. Antimicrob. Agents Chemother., 50 (2006),pp. 2640-2649
    [88]
    Hazbón, M.H., del Valle, M.B., Guerrero, M.I. et al. Antimicrob. Agents Chemother., 49 (2005),pp. 3794-3802
    [89]
    He, L., Wang, X., Cui, P. et al. Tuberculosis, 95 (2015),pp. 149-154
    [90]
    Heinrich, N., Dawson, R., du Bois, J. et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients J. Antimicrob. Chemother., 70 (2015),pp. 1558-1566
    [91]
    Herr Jr., E.B., Hamill, R.L., Mcguire, J.M., 1962. Capreomycin and its preparation. Patent No. 3,143,468 August 4, Indianapolis, USA.
    [92]
    Hillemann, D., Rüsch-Gerdes, S., Richter, E. Antimicrob. Agents Chemother., 52 (2008),pp. 800-801
    [93]
    Hölzel, C.S., Harms, K.S., Schwaiger, K. et al. Antimicrob. Agents Chemother., 54 (2010),pp. 1351-1353
    [94]
    Hopewell, P.C., Kato-Maeda, M., Ernst, J.D.
    [95]
    Huang, Q., Kirikae, F., Kirikae, T. et al. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents J. Med. Chem., 49 (2006),pp. 463-466
    [96]
    Huang, W.L., Chi, T.L., Wu, M.H. et al. J. Clin. Microbiol., 49 (2011),pp. 2502-2508
    [97]
    Huitric, E., Verhasselt, P., Koul, A. et al. Antimicrob. Agents Chemother., 54 (2010),pp. 1022-1028
    [98]
    Iwainsky, H.
    [99]
    Jaber, A.A., Ahmad, S., Mokaddas, E. Ann. Clin. Microbiol. Antimicrob., 8 (2009),p. 1
    [100]
    Jagielski, T., Ignatowska, H., Bakuła, Z. et al. PLoS One, 9 (2014),p. e100078
    [101]
    Jamieson, F.B., Guthrie, J.L., Neemuchwala, A. et al. J. Clin. Microbiol., 52 (2014),pp. 2157-2162
    [102]
    Jnawali, H.N., Hwang, S.C., Park, Y.K. et al. Diagn. Microbiol. Infect. Dis., 76 (2013),pp. 187-196
    [103]
    Johansen, S.K., Maus, C.E., Plikaytis, B.B. et al. Mol. Cell, 23 (2006),pp. 173-182
    [104]
    Juréen, P., Werngren, J., Toro, J.C. et al. Antimicrob. Agents Chemother., 52 (2008),pp. 1852-1854
    [105]
    Kantardjieff, K.A., Kim, C.Y., Naranjo, C. et al. Acta Crystallogr. D. Biol., 60 (2004),pp. 895-902
    [106]
    Kato, J.I., Nishimura, Y., Imamura, R. et al. Cell, 63 (1990),pp. 393-404
    [107]
    Kaushik, A., Makkar, N., Pandey, P. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 6561-6567
    [108]
    Klitgaard, R.N., Ntokou, E., Nørgaard, K. et al. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance Antimicrob. Agents Chemother., 59 (2015),pp. 3518-3528
    [109]
    Kocagöz, T., Hackbarth, C.J., Unsal, I. et al. Antimicrob. Agents Chemother., 40 (1996),pp. 1768-1774
    [110]
    Konno, K., Feldmann, F.M., McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli Am. Rev. Respir. Dis., 95 (1967),pp. 461-469
    [111]
    Köser, C.U., Bryant, J.M., Becq, J. et al. N. Engl. J. Med., 369 (2013),pp. 290-292
    [112]
    Köser, C.U., Comas, I., Feuerriegel, S. et al. Tuberculosis, 94 (2014),pp. 451-453
    [113]
    Koul, A., Arnoult, E., Lounis, N. et al. The challenge of new drug discovery for tuberculosis Nature, 469 (2011),pp. 483-490
    [114]
    Krieger, I.V., Freundlich, J.S., Gawandi, V.B. et al. Chem. Biol., 19 (2012),pp. 1556-1567
    [115]
    Kumar, K., Awasthi, D., Lee, S.Y. et al. J. Med. Chem., 54 (2010),pp. 374-381
    [116]
    Larsen, M.H., Vilchèze, C., Kremer, L. et al. Mol. Microbiol., 46 (2002),pp. 453-466
    [117]
    Lee, H., Cho, S.N., Bang, H.E. et al. Int. J. Tuberc. Lung Dis., 4 (2000),pp. 441-447
    [118]
    Lee, M., Lee, J., Carroll, M.W. et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis N. Engl. J. Med., 367 (2012),pp. 1508-1518
    [119]
    Lehmann, J. Lancet, 247 (1946),pp. 15-16
    [120]
    Lei, B., Wei, C.J., Tu, S.C. J. Biol. Chem., 275 (2000),pp. 2520-2526
    [121]
    Lenaerts, A.J., Gruppo, V., Marietta, K.S. et al. Antimicrob. Agents Chemother., 49 (2005),pp. 2294-2301
    [122]
    Lety, M.A., Nair, S., Berche, P. et al. Antimicrob. Agents Chemother., 41 (1997),pp. 2629-2633
    [123]
    Leung, K.L., Yip, C.W., Yeung, Y.L. et al. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs J. Appl. Microbiol., 109 (2010),pp. 2087-2094
    [124]
    Li, W., Upadhyay, A., Fontes, F.L. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 6413-6423
    [125]
    Li, W., Xin, Y., McNeil, M.R. et al. Biochem. Biophys. Res. Commun., 342 (2006),pp. 170-178
    [126]
    Long, Q., Li, W., Du, Q. et al. Int. J. Antimicrob. Agents, 39 (2012),pp. 486-489
    [127]
    Lougheed, K.E., Osborne, S.A., Saxty, B. et al. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents Tuberculosis, 91 (2011),pp. 277-286
    [128]
    Ma, Y., Stern, R.J., Scherman, M.S. et al. Antimicrob. Agents Chemother., 45 (2001),pp. 1407-1416
    [129]
    Machado, D., Perdigão, J., Ramos, J. et al. J. Antimicrob. Chemother., 68 (2013),pp. 1728-1732
    [130]
    Makafe, G.G., Cao, Y., Tan, Y. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 3202-3206
    [131]
    Malik, S., Willby, M., Sikes, D. et al. PLoS One, 7 (2012),p. e39754
    [132]
    Manjunatha, U., Boshoff, H.I., Barry, C.E. The mechanism of action of Prm: novel insights from transcriptional profiling Comm. Integr. Bio., 2 (2009),pp. 215-218
    [133]
    Manjunatha, U.H., Boshoff, H., Dowd, C.S. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 431-436
    [134]
    Manten, A., Van Klingeren, B., Voogd, C.E. et al. D-cycloserine as a bactericidal drug; antagonism between D-cycloserine and the bacteriostatic antibiotics chloramphenicol and tetracycline Chemotherapy, 13 (1968),pp. 242-248
    [135]
    Maruri, F., Sterling, T.R., Kaiga, A.W. et al. J. Antimicrob. Chemother., 67 (2012),pp. 819-831
    [136]
    Maslov, D.A., Zaĭchikova, M.V., Chernousova, L.N. et al. Tuberculosis, 95 (2015),pp. 608-612
    [137]
    Mathew, B., Ross, L., Reynolds, R.C. A novel quinoline derivative that inhibits mycobacterial FtsZ Tuberculosis, 93 (2013),pp. 398-400
    [138]
    Mathys, V., Wintjens, R., Lefevre, P. et al. Antimicrob. Agents Chemother., 53 (2009),pp. 2100-2109
    [139]
    Matsumoto, M., Hashizume, H., Tomishige, T. et al. PLoS Med., 3 (2006),p. e466
    [140]
    Maus, C.E., Plikaytis, B.B., Shinnick, T.M. Antimicrob. Agents Chemother., 49 (2005),pp. 3192-3197
    [141]
    Mboowa, G., Namaganda, C., Ssengooba, W. BMC Infect. Dis., 14 (2014),p. 481
    [142]
    Mdluli, K., Slayden, R.A., Zhu, Y. et al. Science, 280 (1998),pp. 1607-1610
    [143]
    Merker, M., Kohl, T.A., Roetzer, A. et al. PLoS One, 8 (2013),p. e82551
    [144]
    Meumann, E.M., Globan, M., Fyfe, J.A. et al. Microb. Genom., 1 (2015),pp. 1-9
    [145]
    Middlebrook, G. Am. Rev. Tuberc., 65 (1952),pp. 765-767
    [146]
    Middlebrook, G. Isoniazid resistance and catalase activity of tubercle bacilli Am. Rev. Tuberc., 69 (1954),pp. 471-472
    [147]
    Migliori, G.B., Dara, M., de Colombani, P. et al. Multidrug-resistant tuberculosis in Eastern Europe: still on the increase? Eur. Respir. J., 39 (2012),pp. 1290-1291
    [148]
    Milano, A., Pasca, M.R., Provvedi, R. et al. Tuberculosis, 89 (2009),pp. 84-90
    [149]
    Mitchison, D.A. The action of antituberculosis drugs in short-course chemotherapy Tubercle, 66 (1985),pp. 219-225
    [150]
    Moazed, D., Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA Nature, 327 (1987),pp. 389-394
    [151]
    Mokrousov, I., Otten, T., Manicheva, O. et al. Antimicrob. Agents Chemother., 52 (2008),pp. 2937-2939
    [152]
    Mokrousov, I., Otten, T., Vyshnevskiy, B. et al. J. Clin. Microbiol., 40 (2002),pp. 3810-3813
    [153]
    Mori, G., Chiarelli, L.R., Esposito, M. et al. Chem. Biol., 22 (2015),pp. 917-927
    [154]
    Mothiba, M.T., Anderson, R., Fourie, B. et al. J. Glob. Antimicrob. Res., 3 (2015),pp. 13-18
    [155]
    Moure, R., Español, M., Tudó, G. et al. J. Antimicrob. Chemother., 69 (2014),pp. 947-954
    [156]
    Mukherjee, T., Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and future Future Med. Chem., 3 (2011),pp. 1427-1454
    [157]
    Müller, B., Streicher, E.M., Hoek, K.G.P. et al. Int. J. Tuberc. Lung Dis., 15 (2011),pp. 344-351
    [158]
    Nair, J., Rouse, D.A., Bai, G.H. et al. Mol. Microbiol., 10 (1993),pp. 521-527
    [159]
    Njire, M., Tan, Y., Mugweru, J. et al. Adv. Med. Sci., 61 (2016),pp. 63-71
    [160]
    Nodieva, A., Jansone, I., Broka, L. et al. Int. J. Tuberc. Lung Dis., 14 (2010),pp. 427-433
    [161]
    Nosova, E.Y., Bukatina, A.A., Isaeva, Y.D. et al. J. Med. Microbiol., 62 (2013),pp. 108-113
    [162]
    Ocheretina, O., Escuyer, V.E., Mabou, M.M. et al. PLoS One, 9 (2014),p. e9056
    [163]
    Okamoto, S., Tamaru, A., Nakajima, C. et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria Mol. Microbiol., 63 (2007),pp. 1096-1106
    [164]
    Palomino, J.C., Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio Curr. Med. Chem., 20 (2013),pp. 3785-3796
    [165]
    Pandey, B., Grover, S., Tyagi, C. et al. Gene, 581 (2016),pp. 3-42
    [166]
    Pantel, A., Petrella, S., Veziris, N. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 1990-1996
    [167]
    Parish, T., Roberts, G., Laval, F. et al. J. Bact., 189 (2007),pp. 3721-3728
    [168]
    Park, B., Awasthi, D., Chowdhury, S.R. et al. Design, synthesis and evaluation of novel 2, 5, 6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents Bioorg. Med. Chem., 22 (2014),pp. 2602-2612
    [169]
    Park, H.D., Guinn, K.M., Harrell, M.I. et al. Mol. Microbiol., 48 (2003),pp. 833-843
    [170]
    Park, Y.K., Ryoo, S.W., Lee, S.H. et al. J. Med. Microbiol., 61 (2012),pp. 529-534
    [171]
    Pawelczyk, J., Brzostek, A., Kremer, L. et al. J. Bacteriol., 193 (2011),pp. 6960-6972
    [172]
    Perdigão, J., Macedo, R., Malaquias, A. et al. J. Antimicrob. Chemother., 65 (2010),pp. 224-227
    [173]
    Perdigão, J., Macedo, R., Ribeiro, A. et al. Int. J. Antimicrob. Agents, 33 (2009),pp. 334-338
    [174]
    Pethe, K., Bifani, P., Jang, J. et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis Nat. Med., 19 (2013),pp. 1157-1160
    [175]
    Petrella, S., Cambau, E., Chauffour, A. et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria Antimicrob. Agents Chemother., 50 (2006),pp. 2853-2856
    [176]
    Piccaro, G., Pietraforte, D., Giannoni, F. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 7527-7533
    [177]
    Plinke, C., Cox, H.S., Zarkua, N. et al. J. Antimicrob. Chemother., 65 (2010),pp. 1359-1367
    [178]
    Prosser, G.A., de Carvalho, L.P. Metabolomics reveal d-alanine: d-alanine ligase as the target of d-cycloserine in Mycobacterium tuberculosis ACS Med. Chem. Lett., 4 (2013),pp. 1233-1237
    [179]
    Protopopova, M., Hanrahan, C., Nikonenko, B. et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1, 2-ethylenediamines J. Antimicrob. Chemother., 56 (2005),pp. 968-974
    [180]
    Quemard, A., Sacchettini, J.C., Dessen, A. et al. Biochemistry, 34 (1995),pp. 8235-8241
    [181]
    Rahim, Z., Nakajima, C., Raqib, R. et al. Tuberculosis, 92 (2012),pp. 529-534
    [182]
    Ramaswamy, S., Musser, J.M. Tuber. Lung Dis., 79 (1998),pp. 3-29
    [183]
    Ramaswamy, S.V., Amin, A.G., Göksel, S. et al. Antimicrob. Agents Chemother., 44 (2000),pp. 326-336
    [184]
    Reddy, V.M., Nadadhur, G., Daneluzzi, D. et al. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157 Antimicrob. Agents Chemother., 40 (1996),pp. 633-636
    [185]
    Reeves, A.Z., Campbell, P.J., Sultana, R. et al. Antimicrob. Agents Chemother., 57 (2013),pp. 1857-1865
    [186]
    Ren, J.X., Qian, H.L., Huang, Y.X. et al. Comput. Biol. Med., 58 (2015),pp. 110-117
    [187]
    Rengarajan, J., Sassetti, C.M., Naroditskaya, V. et al. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria Mol. Microbiol., 53 (2004),pp. 275-282
    [188]
    Rozwarski, D.A., Grant, G.A., Barton, D.H. et al. Science, 279 (1998),pp. 98-102
    [189]
    Safi, H., Lingaraju, S., Amin, A. et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes Nat. Genet., 45 (2013),pp. 1190-1197
    [190]
    Saier, M.H., Yen, M.R., Noto, K. et al. The transporter classification database: recent advances Nucleic Acids Res., 37 (2009),pp. D274-D278
    [191]
    Saint-Joanis, B., Souchon, H., Wilming, M. et al. Biochem. J., 338 (1999),pp. 753-760
    [192]
    Schnappinger, D., Ehrt, S., Voskuil, M.I. et al. J. Exp. Med., 198 (2003),pp. 693-704
    [193]
    Scorpio, A., Zhang, Y. Nat. Med., 2 (1996),pp. 662-667
    [194]
    Seifert, M., Catanzaro, D., Catanzaro, A. et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review PLoS One, 10 (2015),p. e0119628
    [195]
    Sensi, P. History of the development of rifampin Rev. Infect. Dis., 5 (1983),pp. S402-S406
    [196]
    Sharma, D., Cukras, A.R., Rogers, E.J. et al. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome J. Mol. Biol., 374 (2007),pp. 1065-1076
    [197]
    Shekar, S., Yeo, Z.X., Wong, J.C. et al. PLoS One, 9 (2014),p. e102383
    [198]
    Shen, X., Shen, G.M., Wu, J. et al. Antimicrob. Agents Chemother., 51 (2007),pp. 2618-2620
    [199]
    Shi, D., Li, L., Zhao, Y. et al. J. Antimicrob. Chemother., 66 (2011),pp. 2240-2247
    [200]
    Shi, W., Chen, J., Feng, J. et al. Emerg. Microbes Infect., 3 (2014),p. e58
    [201]
    Shimokawa, Y., Sasahara, K., Yoda, N. et al. Biol. Pharm. Bull., 37 (2014),pp. 1727-1735
    [202]
    Singh, N., Tiwari, S., Srivastava, K.K. et al. J. Chem. Inf. Model, 55 (2015),pp. 1120-1129
    [203]
    Sirgel, F.A., Warren, R.M., Streicher, E.M. et al. J. Antimicrob. Chemother., 67 (2012),pp. 1088-1093
    [204]
    Siu, G.K.H., Yam, W.C., Zhang, Y. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 6093-6100
    [205]
    Siu, G.K.H., Zhang, Y., Lau, T.C. et al. J. Antimicrob. Chemother., 66 (2011),pp. 730-733
    [206]
    Smittipat, N., Juthayothin, T., Billamas, P. et al. J. Glob. Antimicrob. Resist., 4 (2016),pp. 5-10
    [207]
    Somoskovi, A., Dormandy, J., Mitsani, D. et al. J. Clin. Microbiol., 44 (2006),pp. 4459-4463
    [208]
    Sowajassatakul, A., Prammananan, T., Chaiprasert, A. et al. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand BMC Microb., 14 (2014),p. 1
    [209]
    Spies, F.S., Ribeiro, A.W., Ramos, D.F. et al. J. Clin. Microbiol., 49 (2011),pp. 2625-2630
    [210]
    Sreevatsan, S., Stockbauer, K.E., Pan, X.I. et al. Antimicrob. Agents Chemother., 41 (1997),pp. 1677-1681
    [211]
    Srivastava, S., Ayyagari, A., Dhole, T.N. et al. Int. J. Med. Microbiol., 299 (2009),pp. 269-280
    [212]
    Stanley, S.A., Kawate, T., Iwase, N. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 11565-11570
    [213]
    Stover, C.K., Warrener, P., VanDevanter, D.R. et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis Nature, 405 (2000),pp. 962-966
    [214]
    Sun, H., Zhang, C., Xiang, L. et al. Tuberculosis, 96 (2016),pp. 102-106
    [215]
    Suzuki, Y., Katsukawa, C., Tamaru, A. et al. J. Clin. Microbiol., 36 (1998),pp. 1220-1225
    [216]
    Swindells, S. New drugs to treat tuberculosis. F1000 Med. Rep., 4 (2012),p. 12
    [217]
    Tahlan, K., Wilson, R., Kastrinsky, D.B. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 1797-1809
    [218]
    Takayama, K., Kilburn, J.O. Antimicrob. Agents Chemother., 33 (1989),pp. 1493-1499
    [219]
    Takayama, K., Wang, L., David, H.L. Antimicrob. Agents Chemother., 2 (1972),pp. 29-35
    [220]
    Takiff, H.E., Feo, O. Lancet Infect. Dis., 15 (2015),pp. 1077-1090
    [221]
    Takiff, H.E., Salazar, L., Guerrero, C. et al. Antimicrob. Agents Chemother., 38 (1994),pp. 773-780
    [222]
    Tan, Y., Hu, Z., Zhang, T. et al. J. Clin. Microbiol., 52 (2014),pp. 291-297
    [223]
    Tan, Y., Hu, Z., Zhao, Y. et al. J. Clin. Microbiol., 50 (2012),pp. 81-85
    [224]
    Tasneen, R., Williams, K., Amoabeng, O. et al. Contribution of the nitroimidazoles Prm and TBA-354 to the activity of novel regimens in murine models of tuberculosis Antimicrob. Agents Chemother., 59 (2015),pp. 129-135
    [225]
    Telenti, A., Imboden, P., Marchesi, F. et al. Antimicrob. Agents Chemother., 37 (1993),pp. 2054-2058
    [226]
    Telenti, A., Philipp, W.J., Sreevatsan, S. et al. Nat. Med., 3 (1997),pp. 567-570
    [227]
    Thee, S., Garcia-Prats, A.J., Donald, P.R. et al. A review of the use of ethionamide and prothionamide in childhood tuberculosis Tuberculosis, 97 (2016),pp. 126-136
    [228]
    Thirumurugan, R., Kathirvel, M., Vallayyachari, K. et al. J. Infect. Pub. Health, 8 (2015),pp. 619-625
    [229]
    Tomioka, H., Namba, K. Development of antituberculous drugs: current status and future prospects Kekkaku Tuberc., 81 (2006),pp. 753-774
    [230]
    Tyagi, S., Ammerman, N.C., Li, S.Y. et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 869-874
    [231]
    Udwadia, Z.F., Sen, T., Moharil, G. Assessment of linezolid efficacy and safety in MDR- and XDR-TB: an Indian perspective Eur. Respir. J., 35 (2010),pp. 936-938
    [232]
    Umezawa, H., Ueda, M., Maeda, K. et al. Production and isolation of a new antibiotic: kanamycin J. Antibiot., 10 (1957),p. 181
    [233]
    Unissa, A.N., Sudha, S., Selvakumar, N. et al. Bioinformation, 7 (2011),p. 107
    [234]
    Valafar, F., Ramirez-Busby, S.M., Torres, J. et al. Int. J. Mycobacteriol., 4 (2015),pp. 51-52
    [235]
    Van Deun, A., Maug, A.K.J., Salim, M.A.H. et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis Am. J. Respir. Crit. Care Med., 182 (2010),pp. 684-692
    [236]
    Van Deun, A., Aung, K.J.M., Hossain, A. et al. Int. J. Tuberc. Lung Dis., 19 (2015),pp. 185-190
    [237]
    Vannelli, T.A., Dykman, A., de Montellano, P.R.O. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase J. Biol. Chem., 277 (2002),pp. 12824-12829
    [238]
    Vaubourgeix, J., Bardou, F., Boissier, F. et al. J. Biol. Chem., 284 (2009),pp. 19321-19330
    [239]
    Via, L.E., Cho, S.N., Hwang, S. et al. J. Clin. Microbiol., 48 (2010),pp. 402-411
    [240]
    Vilchèze, C., Microbiol. Spectr., 2 (2014),pp. 1-21
    [241]
    Vilchèze, C., The mechanism of isoniazid killing: clarity through the scope of genetics Annu. Rev. Microbiol., 61 (2007),pp. 35-50
    [242]
    Vilchèze, C., Wang, F., Arai, M. et al. Nat. Med., 12 (2006),pp. 1027-1029
    [243]
    Villemagne, B., Crauste, C., Flipo, M. et al. Tuberculosis: the drug development pipeline at a glance Eur. J. Med. Chem., 51 (2012),pp. 1-16
    [244]
    Wade, M.M., Zhang, Y. Front. Biosci., 9 (2004),pp. 975-994
    [245]
    Wagenlehner, F.M.E., Naber, K.G. Fluoroquinolone antimicrobial agents in the treatment of prostatitis and recurrent urinary tract infections in men Curr. Infect. Dis. Rep., 7 (2005),pp. 9-16
    [246]
    Walker, T.M., Kohl, T.A., Omar, S.V. et al. Lancet Infect. Dis., 15 (2015),pp. 1193-1202
    [247]
    Wengenack, N.L., Uhl, J.R., Amand, A.L.S. et al. J. Infect. Dis., 176 (1997),pp. 722-727
    [248]
    Wilming, M., Johnsson, K. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid Angew. Chem. Int. Ed. Engl., 38 (1999),pp. 2588-2590
    [249]
    Wilson, R., Kumar, P., Parashar, V. et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis Nat. Chem. Biol., 9 (2013),pp. 499-506
    [250]
    Wilson, T.M., Collins, D.M. Mol. Microbiol., 19 (1996),pp. 1025-1034
    [251]
    Winder, F.G., Collins, P.B. J. Gen. Microbiol., 63 (1970),pp. 41-48
    [252]
    Witney, A.A., Gould, K.A., Arnold, A. et al. Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases J. Clin. Microbiol., 53 (2015),pp. 1473-1483
    [253]
    Wolucka, B.A., McNeil, M.R., de Hoffmann, E. et al. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria J. Biol. Chem., 269 (1994),pp. 23328-23335
    [254]
    Wong, S.Y., Lee, J.S., Kwak, H.K. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 2515-2522
    [255]
    WHO
    [256]
    Xia, Q., Zhao, L.L., Li, F. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 1690-1695
    [257]
    Xu, P., Wu, J., Yang, C. et al. Tuberculosis, 98 (2016),pp. 56-61
    [258]
    Yadav, R., Sethi, S., Dhatwalia, S.K. et al. Int. J. Tuberc. Lung Dis., 17 (2013),pp. 251-257
    [259]
    Yeager, R.L., Munroe, W.G.C., Dessau, F.I. Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis Am. Rev. Tuberc. Pulmon. Dis., 65 (1952),pp. 523-546
    [260]
    Yoon, J.H., Nam, J.S., Kim, K.J. et al. J. Microbiol. Methods, 92 (2013),pp. 301-306
    [261]
    Yuan, X., Zhang, T., Kawakami, K. et al. J. Clin. Microbiol., 50 (2012),pp. 2404-2413
    [262]
    Zaunbrecher, M.A., Sikes, R.D., Metchock, B. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 20004-20009
    [263]
    Zhang, N., Torrelles, J.B., McNeil, M.R. et al. Mol. Microbiol., 50 (2003),pp. 69-76
    [264]
    Zhang, Q., Wan, B., Zhou, A. et al. Gene, 582 (2016),pp. 128-136
    [265]
    Zhang, S., Chen, J., Shi, W. et al. Emerg. Microbes Infect., 2 (2013),p. e34
    [266]
    Zhang, S., Chen, J., Cui, P. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 2542-2544
    [267]
    Zhang, S., Chen, J., Cui, P. et al. J. Antimicrob. Chemother., 70 (2015),pp. 2507-2510
    [268]
    Zhang, Y., Heym, B., Allen, B. et al. Nature, 358 (1992),pp. 591-593
    [269]
    Zhang, Y., Vilcheze, C., Jacobs, W.R.
    [270]
    Zhang, Y., Yew, W.W. Int. J. Tuberc. Lung Dis., 13 (2009),pp. 1320-1330
    [271]
    Zhang, Y., Yew, W.W. Int. J. Tuberc. Lung Dis., 19 (2015),pp. 1276-1289
    [272]
    Zhang, Z., Pang, Y., Wang, Y. et al. Int. J. Antimicrob. Agents, 43 (2014),pp. 231-235
    [273]
    Zhang, Z., Wang, Y., Pang, Y. et al. J. Clin. Microbiol., 52 (2014),pp. 638-641
    [274]
    Zhao, F., Wang, X.D., Erber, L.N. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 1479-1487
    [275]
    Zhao, L.L., Sun, Q., Liu, H.C. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 2045-2050
    [276]
    Zhao, Y., Xu, S., Wang, L. et al. National survey of drug-resistant tuberculosis in China N. Engl. J. Med., 366 (2012),pp. 2161-2170
    [277]
    Zheng, J., Rubin, E.J., Bifani, P. et al. J. Biol. Chem., 288 (2013),pp. 23447-23456
    [278]
    Zhu, M., Namdar, R., Stambaugh, J.J. et al. Population pharmacokinetics of ethionamide in patients with tuberculosis Tuberculosis, 82 (2002),pp. 91-96
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads (11) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return