[1] |
Abrahams, K.A., Cox, J.A., Spivey, V.L. et al. PLoS One, 7 (2012),p. e52951
|
[2] |
Ajbani, K., Rodrigues, C., Shenai, S. et al. Mutation detection and accurate diagnosis of extensively drug-resistant tuberculosis: report from a tertiary care center in India J. Clin. Microbiol., 49 (2011),pp. 1588-1590
|
[3] |
Alahari, A., Trivelli, X., Guérardel, Y. et al. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria PLoS One, 2 (2007),p. e1343
|
[4] |
Alangaden, G.J., Kreiswirth, B.N., Aouad, A. et al. Antimicrob. Agents Chemother., 42 (1998),pp. 1295-1297
|
[5] |
Alexander, D.C., Ma, J.H., Guthrie, J.L. et al. J. Clin. Microbiol., 50 (2012),pp. 3726-3728
|
[6] |
Allegui, Z., Ghariani, A., Draoui, H. et al. Int. J. Mycobacteriol., 1 (2012),pp. 34-39
|
[7] |
Almeida, D., Ioerger, T., Tyagi, S. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 4590-4599
|
[8] |
Alvarez, N., Zapata, E., Mejía, G.I. et al. BioMed. Res. Int., 2014 (2014),pp. 367-368
|
[9] |
An, D.D., Duyen, N.T.H., Lan, N.T.N. et al. Antimicrob. Agents Chemother., 53 (2009),pp. 4835-4839
|
[10] |
Andres, S., Hillemann, D., Rüsch-Gerdes, S. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 590-592
|
[11] |
Andries, K., Verhasselt, P., Guillemont, J. et al. Science, 307 (2005),pp. 223-227
|
[12] |
Andries, K., Villellas, C., Coeck, N. et al. PLoS One, 9 (2014),p. e102135
|
[13] |
Arbex, M.A., Varella, M.D.C.L., Siqueira, H.R.D. et al. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations-part 1: first-line drugs J. Bras. Pneumol., 36 (2010),pp. 626-640
|
[14] |
Awasthi, D., Kumar, K., Knudson, S.E. et al. J. Med. Chem., 56 (2013)
|
[15] |
Aye, K.S., Nakajima, C., Yamaguchi, T. et al. J. Infect. Chemother., 22 (2016),pp. 174-179
|
[16] |
Banerjee, A., Dubnau, E., Quemard, A. et al. Science, 263 (1994),pp. 227-229
|
[17] |
Bantubani, N., Kabera, G., Connolly, C. et al. High rates of potentially infectious tuberculosis and multidrug-resistant tuberculosis (MDR-TB) among hospital inpatients in KwaZulu Natal, South Africa indicate risk of nosocomial transmission PLoS One, 9 (2014),p. e90868
|
[18] |
Baulard, A.R., Betts, J.C., Engohang-Ndong, J. et al. Activation of the pro-drug ethionamide is regulated in mycobacteria J. Biol. Chem., 275 (2000),pp. 28326-28331
|
[19] |
Beckert, P., Hillemann, D., Kohl, T.A. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 2743-2745
|
[20] |
Belanger, A.E., Besra, G.S., Ford, M.E. et al. Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 11919-11924
|
[21] |
Bhuju, S., de Souza Fonseca, L., Marsico, A.G. et al. Infect. Genet. Evol., 19 (2013),pp. 1-6
|
[22] |
Blanchard, J.S. Annu. Rev. Biochem., 65 (1996),pp. 215-239
|
[23] |
Bloemberg, G.V., Keller, P.M., Stucki, D. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis N. Engl. J. Med., 373 (2015),pp. 1986-1988
|
[24] |
Boonaiam, S., Chaiprasert, A., Prammananan, T. et al. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand Clin. Microbiol. Infect., 16 (2010),pp. 396-399
|
[25] |
Brossier, F., Sougakoff, W., Bernard, C. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 4800-4808
|
[26] |
Bruning, J.B., Murillo, A.C., Chacon, O. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 291-301
|
[27] |
Caceres, N.E., Harris, N.B., Wellehan, J.F. et al. J. Bacteriol., 179 (1997),pp. 5046-5055
|
[28] |
Campbell, P.J., Morlock, G.P., Sikes, R.D. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 2032-2041
|
[29] |
Carette, X., Blondiaux, N., Willery, E. et al. Nucleic Acids Res., 40 (2011),pp. 3018-3030
|
[30] |
Casali, N., Nikolayevskyy, V., Balabanova, Y. et al. Evolution and transmission of drug resistant tuberculosis in a Russian population Nat. Genet., 46 (2014),p. 279
|
[31] |
CDC Treatment of tuberculosis, morbidity and mortality weekly report Recommen. Rep., 52 (2003),pp. 1-77
|
[32] |
Chang, K.C., Yew, W.W., Tam, C.M. et al. WHO group 5 drugs and difficult multidrug-resistant tuberculosis: a systematic review with cohort analysis and meta-analysis Antimicrob. Agents Chemother., 57 (2013),pp. 4097-4104
|
[33] |
Chen, J.M., Uplekar, S., Gordon, S.V. et al. PLoS One, 7 (2012),p. e43467
|
[34] |
Chen, Q., Pang, Y., Liang, Q. et al. Tuberculosis, 94 (2014),pp. 159-161
|
[35] |
China, A., Mishra, S., Tare, P. et al. J. Bacteriol., 194 (2012),pp. 1009-1017
|
[36] |
Cohen, K.A., Abeel, T., McGuire, A.M. et al. PLoS Med., 12 (2015),p. e1001880
|
[37] |
Cholo, M.C., Steel, H.C., Fourie, P.B. et al. Clofazimine: current status and future prospects J. Antimicrob. Chemother., 67 (2012),pp. 290-298
|
[38] |
Comas, I., Borrell, S., Roetzer, A. et al. Nat. Genet., 44 (2012),pp. 106-110
|
[39] |
Pay dirt: the story of streptomycin. Part I: from Waksman to Waksman Am. Rev. Respir. Dis., 117 (1978),pp. 773-781
|
[40] |
Cooksey, R.C., Morlock, G.P., McQueen, A. et al. Antimicrob. Agents Chemother., 40 (1996),pp. 1186-1188
|
[41] |
Cuevas-Córdoba, B., Cuellar-Sánchez, A., Pasissi-Crivelli, A. et al. J. Microbiol. Immunol. Infect., 46 (2013),pp. 30-34
|
[42] |
Cuevas-Córdoba, B., Juárez-Eusebio, D.M., Almaraz-Velasco, R. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 5455-5462
|
[43] |
Cui, Z., Wang, J., Lu, J. et al. BMC Infect. Dis., 11 (2011),p. 78
|
[44] |
Cynamon, M.H., Sklaney, M. Gatifloxacin and ethionamide asthe foundation for therapy of tuberculosis Antimicrob. Agents Chemother., 47 (2003),pp. 2442-2444
|
[45] |
D'Ambrosio, L., Centis, R., Sotgiu, G. et al. New anti-tuberculosis drugs and regimens: 2015 update E.R.J. Open Res., 1 (2015),pp. 00010-02015
|
[46] |
Datta, G., Nieto, L.M., Davidson, R.M. et al. Tuberculosis, 98 (2016),pp. 50-55
|
[47] |
DeBarber, A.E., Mdluli, K., Bosman, M. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 9677-9682
|
[48] |
Desjardins, C.A., Cohen, K.A., Munsamy, V. et al. Nat. Genet., 48 (2016),pp. 544-551
|
[49] |
Dessen, A., Quemard, A., Blanchard, J.S. et al. Science, 267 (1995),pp. 1638-1641
|
[50] |
Devasia, R., Blackman, A., Eden, S. et al. J. Clin. Microbiol., 50 (2011),pp. 1390-1396
|
[51] |
Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F. et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline Am. J. Respir. Crit. Care Med., 191 (2015),pp. 943-953
|
[52] |
Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F. et al. 14-day bactericidal activity of Prm, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial Lancet, 380 (2012),pp. 986-993
|
[53] |
Diacon, A.H., Pym, A., Grobusch, M. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis N. Engl. J. Med., 360 (2009)
|
[54] |
Diacon, A.H., Pym, A., Grobusch, M.P. et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline N. Engl. J. Med., 371 (2014),pp. 723-732
|
[55] |
Dillon, N.A., Peterson, N.D., Rosen, B.C. et al. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide Antimicrob. Agents Chemother., 58 (2014),pp. 7258-7263
|
[56] |
Du, Q., Dai, G., Long, Q. et al. Diagn. Microbiol. Infect. Dis., 77 (2013),pp. 138-142
|
[57] |
Dye, C., Williams, B.G., Espinal, M.A. et al. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis Science, 295 (2002),pp. 2042-2046
|
[58] |
Eldholm, V., Monteserin, J., Rieux, A. et al. Nat. Commun., 6 (2015),p. 7119
|
[59] |
Engström, A., Morcillo, N., Imperiale, B. et al. J. Clin. Microbiol., 50 (2012),pp. 2026-2033
|
[60] |
Engström, A., Perskvist, N., Werngren, J. et al. J. Antimicrob. Chemother., 66 (2011),pp. 1247-1254
|
[61] |
Evans, J., Segal, H. J. Antimicrob. Chemother., 65 (2010)
|
[62] |
Farhat, M.R., Shapiro, B.J., Kieser, K.J. et al. Nat. Genet., 45 (2013),pp. 1183-1189
|
[63] |
Falzon, D., Jaramillo, E., Schünemann, H.J. et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update Eur. Respir. J., 38 (2011),pp. 516-528
|
[64] |
Feng, Y., Liu, S., Wang, Q. et al. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis PLoS One, 8 (2013),p. e55292
|
[65] |
Feng, Z., Barletta, R.G. Antimicrob. Agents Chemother., 47 (2003),pp. 283-291
|
[66] |
Feuerriegel, S., Köser, C.U., Baù, D. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 5718-5722
|
[67] |
Ford, C.B., Shah, R.R., Maeda, M.K. et al. Nat. Genet., 45 (2013),pp. 784-790
|
[68] |
Gao, P., Yang, Y., Xiao, C. et al. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria Eur. J. Pharmacol., 694 (2012),pp. 45-52
|
[69] |
Gavalda, S., Léger, M., van der Rest, B. et al. J. Biol. Chem., 284 (2009),pp. 19255-19264
|
[70] |
Gellert, M., Mizuuchi, K., O'Dea, M.H. et al. DNA gyrase: an enzyme that introduces superhelical turns into DNA Proc. Natl. Acad. Sci. U. S. A., 73 (1976),pp. 3872-3876
|
[71] |
Gikalo, M.B., Nosova, E.Y., Krylova, L.Y. et al. J. Antimicrob. Chemother., 67 (2012),pp. 2107-2109
|
[72] |
Gillespie, S.H. Antimicrob. Agents Chemother., 46 (2002),pp. 267-274
|
[73] |
Ginsberg, A.M., Laurenzi, M.W., Rouse, D.J. et al. Safety, tolerability, and pharmacokinetics of Prm in healthy subjects Antimicrob. Agents Chemother., 53 (2009)
|
[74] |
Ginsburg, A.S., Woolwine, S.C., Hooper, N. et al. N. Engl. J. Med., 349 (2003),pp. 1977-1978
|
[75] |
Glickman, M.S., Cahill, S.M., Jacobs, W.R. J. Biol. Chem., 276 (2001),pp. 2228-2233
|
[76] |
Glickman, M.S., Cox, J.S., Jacobs, W.R. Mol. Cell, 5 (2000),pp. 717-727
|
[77] |
Gothi, D., Joshi, J.M. Resistant TB newer drugs and community approach Recent Pat. Anti-infect. Drug Discov., 6 (2011),pp. 27-37
|
[78] |
Grosset, J.H., Singer, T.G., Bishai, W.R. New drugs for the treatment of tuberculosis: hope and reality Int. J. Tuberc. Lung Dis., 16 (2012),pp. 1005-1014
|
[79] |
Grosset, J.H., Tyagi, S., Almeida, D.V. et al. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice Am. J. Respir. Crit. Care Med., 188 (2013),pp. 608-612
|
[80] |
Grzegorzewicz, A.E., Pham, H., Gundi, V.A. et al. Nat. Chem. Biol., 8 (2012),pp. 334-341
|
[81] |
Gu, Y., Yu, X., Jiang, G. et al. Diagn. Microbiol. Infect. Dis., 84 (2016),pp. 207-211
|
[82] |
Guerrero, E., Lemus, D., Yzquierdo, S. et al. Rev. Argent. Microbiol., 45 (2013),pp. 21-26
|
[83] |
Gupta, R., Lavollay, M., Mainardi, J.L. et al. Nat. Med., 16 (2010),pp. 466-469
|
[84] |
Hamze, M., Ismail, M.B., Rahmo, A.K. et al. Pyrosequencing for rapid detection of tuberculosis resistance to rifampicin and isoniazid in Syrian and Lebanese clinical isolates Int. J. Mycobacteriol., 4 (2015)
|
[85] |
Hartkoorn, R.C., Uplekar, S., Cole, S.T. Antimicrob. Agents Chemother., 58 (2014),pp. 2979-2981
|
[86] |
Haver, H.L., Chua, A., Ghode, P. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 5316-5323
|
[87] |
Hazbón, M.H., Brimacombe, M., del Valle, M.B. et al. Antimicrob. Agents Chemother., 50 (2006),pp. 2640-2649
|
[88] |
Hazbón, M.H., del Valle, M.B., Guerrero, M.I. et al. Antimicrob. Agents Chemother., 49 (2005),pp. 3794-3802
|
[89] |
He, L., Wang, X., Cui, P. et al. Tuberculosis, 95 (2015),pp. 149-154
|
[90] |
Heinrich, N., Dawson, R., du Bois, J. et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients J. Antimicrob. Chemother., 70 (2015),pp. 1558-1566
|
[91] |
Herr Jr., E.B., Hamill, R.L., Mcguire, J.M., 1962. Capreomycin and its preparation. Patent No. 3,143,468 August 4, Indianapolis, USA.
|
[92] |
Hillemann, D., Rüsch-Gerdes, S., Richter, E. Antimicrob. Agents Chemother., 52 (2008),pp. 800-801
|
[93] |
Hölzel, C.S., Harms, K.S., Schwaiger, K. et al. Antimicrob. Agents Chemother., 54 (2010),pp. 1351-1353
|
[94] |
Hopewell, P.C., Kato-Maeda, M., Ernst, J.D.
|
[95] |
Huang, Q., Kirikae, F., Kirikae, T. et al. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents J. Med. Chem., 49 (2006),pp. 463-466
|
[96] |
Huang, W.L., Chi, T.L., Wu, M.H. et al. J. Clin. Microbiol., 49 (2011),pp. 2502-2508
|
[97] |
Huitric, E., Verhasselt, P., Koul, A. et al. Antimicrob. Agents Chemother., 54 (2010),pp. 1022-1028
|
[98] |
Iwainsky, H.
|
[99] |
Jaber, A.A., Ahmad, S., Mokaddas, E. Ann. Clin. Microbiol. Antimicrob., 8 (2009),p. 1
|
[100] |
Jagielski, T., Ignatowska, H., Bakuła, Z. et al. PLoS One, 9 (2014),p. e100078
|
[101] |
Jamieson, F.B., Guthrie, J.L., Neemuchwala, A. et al. J. Clin. Microbiol., 52 (2014),pp. 2157-2162
|
[102] |
Jnawali, H.N., Hwang, S.C., Park, Y.K. et al. Diagn. Microbiol. Infect. Dis., 76 (2013),pp. 187-196
|
[103] |
Johansen, S.K., Maus, C.E., Plikaytis, B.B. et al. Mol. Cell, 23 (2006),pp. 173-182
|
[104] |
Juréen, P., Werngren, J., Toro, J.C. et al. Antimicrob. Agents Chemother., 52 (2008),pp. 1852-1854
|
[105] |
Kantardjieff, K.A., Kim, C.Y., Naranjo, C. et al. Acta Crystallogr. D. Biol., 60 (2004),pp. 895-902
|
[106] |
Kato, J.I., Nishimura, Y., Imamura, R. et al. Cell, 63 (1990),pp. 393-404
|
[107] |
Kaushik, A., Makkar, N., Pandey, P. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 6561-6567
|
[108] |
Klitgaard, R.N., Ntokou, E., Nørgaard, K. et al. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance Antimicrob. Agents Chemother., 59 (2015),pp. 3518-3528
|
[109] |
Kocagöz, T., Hackbarth, C.J., Unsal, I. et al. Antimicrob. Agents Chemother., 40 (1996),pp. 1768-1774
|
[110] |
Konno, K., Feldmann, F.M., McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli Am. Rev. Respir. Dis., 95 (1967),pp. 461-469
|
[111] |
Köser, C.U., Bryant, J.M., Becq, J. et al. N. Engl. J. Med., 369 (2013),pp. 290-292
|
[112] |
Köser, C.U., Comas, I., Feuerriegel, S. et al. Tuberculosis, 94 (2014),pp. 451-453
|
[113] |
Koul, A., Arnoult, E., Lounis, N. et al. The challenge of new drug discovery for tuberculosis Nature, 469 (2011),pp. 483-490
|
[114] |
Krieger, I.V., Freundlich, J.S., Gawandi, V.B. et al. Chem. Biol., 19 (2012),pp. 1556-1567
|
[115] |
Kumar, K., Awasthi, D., Lee, S.Y. et al. J. Med. Chem., 54 (2010),pp. 374-381
|
[116] |
Larsen, M.H., Vilchèze, C., Kremer, L. et al. Mol. Microbiol., 46 (2002),pp. 453-466
|
[117] |
Lee, H., Cho, S.N., Bang, H.E. et al. Int. J. Tuberc. Lung Dis., 4 (2000),pp. 441-447
|
[118] |
Lee, M., Lee, J., Carroll, M.W. et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis N. Engl. J. Med., 367 (2012),pp. 1508-1518
|
[119] |
Lehmann, J. Lancet, 247 (1946),pp. 15-16
|
[120] |
Lei, B., Wei, C.J., Tu, S.C. J. Biol. Chem., 275 (2000),pp. 2520-2526
|
[121] |
Lenaerts, A.J., Gruppo, V., Marietta, K.S. et al. Antimicrob. Agents Chemother., 49 (2005),pp. 2294-2301
|
[122] |
Lety, M.A., Nair, S., Berche, P. et al. Antimicrob. Agents Chemother., 41 (1997),pp. 2629-2633
|
[123] |
Leung, K.L., Yip, C.W., Yeung, Y.L. et al. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs J. Appl. Microbiol., 109 (2010),pp. 2087-2094
|
[124] |
Li, W., Upadhyay, A., Fontes, F.L. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 6413-6423
|
[125] |
Li, W., Xin, Y., McNeil, M.R. et al. Biochem. Biophys. Res. Commun., 342 (2006),pp. 170-178
|
[126] |
Long, Q., Li, W., Du, Q. et al. Int. J. Antimicrob. Agents, 39 (2012),pp. 486-489
|
[127] |
Lougheed, K.E., Osborne, S.A., Saxty, B. et al. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents Tuberculosis, 91 (2011),pp. 277-286
|
[128] |
Ma, Y., Stern, R.J., Scherman, M.S. et al. Antimicrob. Agents Chemother., 45 (2001),pp. 1407-1416
|
[129] |
Machado, D., Perdigão, J., Ramos, J. et al. J. Antimicrob. Chemother., 68 (2013),pp. 1728-1732
|
[130] |
Makafe, G.G., Cao, Y., Tan, Y. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 3202-3206
|
[131] |
Malik, S., Willby, M., Sikes, D. et al. PLoS One, 7 (2012),p. e39754
|
[132] |
Manjunatha, U., Boshoff, H.I., Barry, C.E. The mechanism of action of Prm: novel insights from transcriptional profiling Comm. Integr. Bio., 2 (2009),pp. 215-218
|
[133] |
Manjunatha, U.H., Boshoff, H., Dowd, C.S. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 431-436
|
[134] |
Manten, A., Van Klingeren, B., Voogd, C.E. et al. D-cycloserine as a bactericidal drug; antagonism between D-cycloserine and the bacteriostatic antibiotics chloramphenicol and tetracycline Chemotherapy, 13 (1968),pp. 242-248
|
[135] |
Maruri, F., Sterling, T.R., Kaiga, A.W. et al. J. Antimicrob. Chemother., 67 (2012),pp. 819-831
|
[136] |
Maslov, D.A., Zaĭchikova, M.V., Chernousova, L.N. et al. Tuberculosis, 95 (2015),pp. 608-612
|
[137] |
Mathew, B., Ross, L., Reynolds, R.C. A novel quinoline derivative that inhibits mycobacterial FtsZ Tuberculosis, 93 (2013),pp. 398-400
|
[138] |
Mathys, V., Wintjens, R., Lefevre, P. et al. Antimicrob. Agents Chemother., 53 (2009),pp. 2100-2109
|
[139] |
Matsumoto, M., Hashizume, H., Tomishige, T. et al. PLoS Med., 3 (2006),p. e466
|
[140] |
Maus, C.E., Plikaytis, B.B., Shinnick, T.M. Antimicrob. Agents Chemother., 49 (2005),pp. 3192-3197
|
[141] |
Mboowa, G., Namaganda, C., Ssengooba, W. BMC Infect. Dis., 14 (2014),p. 481
|
[142] |
Mdluli, K., Slayden, R.A., Zhu, Y. et al. Science, 280 (1998),pp. 1607-1610
|
[143] |
Merker, M., Kohl, T.A., Roetzer, A. et al. PLoS One, 8 (2013),p. e82551
|
[144] |
Meumann, E.M., Globan, M., Fyfe, J.A. et al. Microb. Genom., 1 (2015),pp. 1-9
|
[145] |
Middlebrook, G. Am. Rev. Tuberc., 65 (1952),pp. 765-767
|
[146] |
Middlebrook, G. Isoniazid resistance and catalase activity of tubercle bacilli Am. Rev. Tuberc., 69 (1954),pp. 471-472
|
[147] |
Migliori, G.B., Dara, M., de Colombani, P. et al. Multidrug-resistant tuberculosis in Eastern Europe: still on the increase? Eur. Respir. J., 39 (2012),pp. 1290-1291
|
[148] |
Milano, A., Pasca, M.R., Provvedi, R. et al. Tuberculosis, 89 (2009),pp. 84-90
|
[149] |
Mitchison, D.A. The action of antituberculosis drugs in short-course chemotherapy Tubercle, 66 (1985),pp. 219-225
|
[150] |
Moazed, D., Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA Nature, 327 (1987),pp. 389-394
|
[151] |
Mokrousov, I., Otten, T., Manicheva, O. et al. Antimicrob. Agents Chemother., 52 (2008),pp. 2937-2939
|
[152] |
Mokrousov, I., Otten, T., Vyshnevskiy, B. et al. J. Clin. Microbiol., 40 (2002),pp. 3810-3813
|
[153] |
Mori, G., Chiarelli, L.R., Esposito, M. et al. Chem. Biol., 22 (2015),pp. 917-927
|
[154] |
Mothiba, M.T., Anderson, R., Fourie, B. et al. J. Glob. Antimicrob. Res., 3 (2015),pp. 13-18
|
[155] |
Moure, R., Español, M., Tudó, G. et al. J. Antimicrob. Chemother., 69 (2014),pp. 947-954
|
[156] |
Mukherjee, T., Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and future Future Med. Chem., 3 (2011),pp. 1427-1454
|
[157] |
Müller, B., Streicher, E.M., Hoek, K.G.P. et al. Int. J. Tuberc. Lung Dis., 15 (2011),pp. 344-351
|
[158] |
Nair, J., Rouse, D.A., Bai, G.H. et al. Mol. Microbiol., 10 (1993),pp. 521-527
|
[159] |
Njire, M., Tan, Y., Mugweru, J. et al. Adv. Med. Sci., 61 (2016),pp. 63-71
|
[160] |
Nodieva, A., Jansone, I., Broka, L. et al. Int. J. Tuberc. Lung Dis., 14 (2010),pp. 427-433
|
[161] |
Nosova, E.Y., Bukatina, A.A., Isaeva, Y.D. et al. J. Med. Microbiol., 62 (2013),pp. 108-113
|
[162] |
Ocheretina, O., Escuyer, V.E., Mabou, M.M. et al. PLoS One, 9 (2014),p. e9056
|
[163] |
Okamoto, S., Tamaru, A., Nakajima, C. et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria Mol. Microbiol., 63 (2007),pp. 1096-1106
|
[164] |
Palomino, J.C., Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio Curr. Med. Chem., 20 (2013),pp. 3785-3796
|
[165] |
Pandey, B., Grover, S., Tyagi, C. et al. Gene, 581 (2016),pp. 3-42
|
[166] |
Pantel, A., Petrella, S., Veziris, N. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 1990-1996
|
[167] |
Parish, T., Roberts, G., Laval, F. et al. J. Bact., 189 (2007),pp. 3721-3728
|
[168] |
Park, B., Awasthi, D., Chowdhury, S.R. et al. Design, synthesis and evaluation of novel 2, 5, 6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents Bioorg. Med. Chem., 22 (2014),pp. 2602-2612
|
[169] |
Park, H.D., Guinn, K.M., Harrell, M.I. et al. Mol. Microbiol., 48 (2003),pp. 833-843
|
[170] |
Park, Y.K., Ryoo, S.W., Lee, S.H. et al. J. Med. Microbiol., 61 (2012),pp. 529-534
|
[171] |
Pawelczyk, J., Brzostek, A., Kremer, L. et al. J. Bacteriol., 193 (2011),pp. 6960-6972
|
[172] |
Perdigão, J., Macedo, R., Malaquias, A. et al. J. Antimicrob. Chemother., 65 (2010),pp. 224-227
|
[173] |
Perdigão, J., Macedo, R., Ribeiro, A. et al. Int. J. Antimicrob. Agents, 33 (2009),pp. 334-338
|
[174] |
Pethe, K., Bifani, P., Jang, J. et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis Nat. Med., 19 (2013),pp. 1157-1160
|
[175] |
Petrella, S., Cambau, E., Chauffour, A. et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria Antimicrob. Agents Chemother., 50 (2006),pp. 2853-2856
|
[176] |
Piccaro, G., Pietraforte, D., Giannoni, F. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 7527-7533
|
[177] |
Plinke, C., Cox, H.S., Zarkua, N. et al. J. Antimicrob. Chemother., 65 (2010),pp. 1359-1367
|
[178] |
Prosser, G.A., de Carvalho, L.P. Metabolomics reveal d-alanine: d-alanine ligase as the target of d-cycloserine in Mycobacterium tuberculosis ACS Med. Chem. Lett., 4 (2013),pp. 1233-1237
|
[179] |
Protopopova, M., Hanrahan, C., Nikonenko, B. et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1, 2-ethylenediamines J. Antimicrob. Chemother., 56 (2005),pp. 968-974
|
[180] |
Quemard, A., Sacchettini, J.C., Dessen, A. et al. Biochemistry, 34 (1995),pp. 8235-8241
|
[181] |
Rahim, Z., Nakajima, C., Raqib, R. et al. Tuberculosis, 92 (2012),pp. 529-534
|
[182] |
Ramaswamy, S., Musser, J.M. Tuber. Lung Dis., 79 (1998),pp. 3-29
|
[183] |
Ramaswamy, S.V., Amin, A.G., Göksel, S. et al. Antimicrob. Agents Chemother., 44 (2000),pp. 326-336
|
[184] |
Reddy, V.M., Nadadhur, G., Daneluzzi, D. et al. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157 Antimicrob. Agents Chemother., 40 (1996),pp. 633-636
|
[185] |
Reeves, A.Z., Campbell, P.J., Sultana, R. et al. Antimicrob. Agents Chemother., 57 (2013),pp. 1857-1865
|
[186] |
Ren, J.X., Qian, H.L., Huang, Y.X. et al. Comput. Biol. Med., 58 (2015),pp. 110-117
|
[187] |
Rengarajan, J., Sassetti, C.M., Naroditskaya, V. et al. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria Mol. Microbiol., 53 (2004),pp. 275-282
|
[188] |
Rozwarski, D.A., Grant, G.A., Barton, D.H. et al. Science, 279 (1998),pp. 98-102
|
[189] |
Safi, H., Lingaraju, S., Amin, A. et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes Nat. Genet., 45 (2013),pp. 1190-1197
|
[190] |
Saier, M.H., Yen, M.R., Noto, K. et al. The transporter classification database: recent advances Nucleic Acids Res., 37 (2009),pp. D274-D278
|
[191] |
Saint-Joanis, B., Souchon, H., Wilming, M. et al. Biochem. J., 338 (1999),pp. 753-760
|
[192] |
Schnappinger, D., Ehrt, S., Voskuil, M.I. et al. J. Exp. Med., 198 (2003),pp. 693-704
|
[193] |
Scorpio, A., Zhang, Y. Nat. Med., 2 (1996),pp. 662-667
|
[194] |
Seifert, M., Catanzaro, D., Catanzaro, A. et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review PLoS One, 10 (2015),p. e0119628
|
[195] |
Sensi, P. History of the development of rifampin Rev. Infect. Dis., 5 (1983),pp. S402-S406
|
[196] |
Sharma, D., Cukras, A.R., Rogers, E.J. et al. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome J. Mol. Biol., 374 (2007),pp. 1065-1076
|
[197] |
Shekar, S., Yeo, Z.X., Wong, J.C. et al. PLoS One, 9 (2014),p. e102383
|
[198] |
Shen, X., Shen, G.M., Wu, J. et al. Antimicrob. Agents Chemother., 51 (2007),pp. 2618-2620
|
[199] |
Shi, D., Li, L., Zhao, Y. et al. J. Antimicrob. Chemother., 66 (2011),pp. 2240-2247
|
[200] |
Shi, W., Chen, J., Feng, J. et al. Emerg. Microbes Infect., 3 (2014),p. e58
|
[201] |
Shimokawa, Y., Sasahara, K., Yoda, N. et al. Biol. Pharm. Bull., 37 (2014),pp. 1727-1735
|
[202] |
Singh, N., Tiwari, S., Srivastava, K.K. et al. J. Chem. Inf. Model, 55 (2015),pp. 1120-1129
|
[203] |
Sirgel, F.A., Warren, R.M., Streicher, E.M. et al. J. Antimicrob. Chemother., 67 (2012),pp. 1088-1093
|
[204] |
Siu, G.K.H., Yam, W.C., Zhang, Y. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 6093-6100
|
[205] |
Siu, G.K.H., Zhang, Y., Lau, T.C. et al. J. Antimicrob. Chemother., 66 (2011),pp. 730-733
|
[206] |
Smittipat, N., Juthayothin, T., Billamas, P. et al. J. Glob. Antimicrob. Resist., 4 (2016),pp. 5-10
|
[207] |
Somoskovi, A., Dormandy, J., Mitsani, D. et al. J. Clin. Microbiol., 44 (2006),pp. 4459-4463
|
[208] |
Sowajassatakul, A., Prammananan, T., Chaiprasert, A. et al. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand BMC Microb., 14 (2014),p. 1
|
[209] |
Spies, F.S., Ribeiro, A.W., Ramos, D.F. et al. J. Clin. Microbiol., 49 (2011),pp. 2625-2630
|
[210] |
Sreevatsan, S., Stockbauer, K.E., Pan, X.I. et al. Antimicrob. Agents Chemother., 41 (1997),pp. 1677-1681
|
[211] |
Srivastava, S., Ayyagari, A., Dhole, T.N. et al. Int. J. Med. Microbiol., 299 (2009),pp. 269-280
|
[212] |
Stanley, S.A., Kawate, T., Iwase, N. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 11565-11570
|
[213] |
Stover, C.K., Warrener, P., VanDevanter, D.R. et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis Nature, 405 (2000),pp. 962-966
|
[214] |
Sun, H., Zhang, C., Xiang, L. et al. Tuberculosis, 96 (2016),pp. 102-106
|
[215] |
Suzuki, Y., Katsukawa, C., Tamaru, A. et al. J. Clin. Microbiol., 36 (1998),pp. 1220-1225
|
[216] |
Swindells, S. New drugs to treat tuberculosis. F1000 Med. Rep., 4 (2012),p. 12
|
[217] |
Tahlan, K., Wilson, R., Kastrinsky, D.B. et al. Antimicrob. Agents Chemother., 56 (2012),pp. 1797-1809
|
[218] |
Takayama, K., Kilburn, J.O. Antimicrob. Agents Chemother., 33 (1989),pp. 1493-1499
|
[219] |
Takayama, K., Wang, L., David, H.L. Antimicrob. Agents Chemother., 2 (1972),pp. 29-35
|
[220] |
Takiff, H.E., Feo, O. Lancet Infect. Dis., 15 (2015),pp. 1077-1090
|
[221] |
Takiff, H.E., Salazar, L., Guerrero, C. et al. Antimicrob. Agents Chemother., 38 (1994),pp. 773-780
|
[222] |
Tan, Y., Hu, Z., Zhang, T. et al. J. Clin. Microbiol., 52 (2014),pp. 291-297
|
[223] |
Tan, Y., Hu, Z., Zhao, Y. et al. J. Clin. Microbiol., 50 (2012),pp. 81-85
|
[224] |
Tasneen, R., Williams, K., Amoabeng, O. et al. Contribution of the nitroimidazoles Prm and TBA-354 to the activity of novel regimens in murine models of tuberculosis Antimicrob. Agents Chemother., 59 (2015),pp. 129-135
|
[225] |
Telenti, A., Imboden, P., Marchesi, F. et al. Antimicrob. Agents Chemother., 37 (1993),pp. 2054-2058
|
[226] |
Telenti, A., Philipp, W.J., Sreevatsan, S. et al. Nat. Med., 3 (1997),pp. 567-570
|
[227] |
Thee, S., Garcia-Prats, A.J., Donald, P.R. et al. A review of the use of ethionamide and prothionamide in childhood tuberculosis Tuberculosis, 97 (2016),pp. 126-136
|
[228] |
Thirumurugan, R., Kathirvel, M., Vallayyachari, K. et al. J. Infect. Pub. Health, 8 (2015),pp. 619-625
|
[229] |
Tomioka, H., Namba, K. Development of antituberculous drugs: current status and future prospects Kekkaku Tuberc., 81 (2006),pp. 753-774
|
[230] |
Tyagi, S., Ammerman, N.C., Li, S.Y. et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 869-874
|
[231] |
Udwadia, Z.F., Sen, T., Moharil, G. Assessment of linezolid efficacy and safety in MDR- and XDR-TB: an Indian perspective Eur. Respir. J., 35 (2010),pp. 936-938
|
[232] |
Umezawa, H., Ueda, M., Maeda, K. et al. Production and isolation of a new antibiotic: kanamycin J. Antibiot., 10 (1957),p. 181
|
[233] |
Unissa, A.N., Sudha, S., Selvakumar, N. et al. Bioinformation, 7 (2011),p. 107
|
[234] |
Valafar, F., Ramirez-Busby, S.M., Torres, J. et al. Int. J. Mycobacteriol., 4 (2015),pp. 51-52
|
[235] |
Van Deun, A., Maug, A.K.J., Salim, M.A.H. et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis Am. J. Respir. Crit. Care Med., 182 (2010),pp. 684-692
|
[236] |
Van Deun, A., Aung, K.J.M., Hossain, A. et al. Int. J. Tuberc. Lung Dis., 19 (2015),pp. 185-190
|
[237] |
Vannelli, T.A., Dykman, A., de Montellano, P.R.O. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase J. Biol. Chem., 277 (2002),pp. 12824-12829
|
[238] |
Vaubourgeix, J., Bardou, F., Boissier, F. et al. J. Biol. Chem., 284 (2009),pp. 19321-19330
|
[239] |
Via, L.E., Cho, S.N., Hwang, S. et al. J. Clin. Microbiol., 48 (2010),pp. 402-411
|
[240] |
Vilchèze, C., Microbiol. Spectr., 2 (2014),pp. 1-21
|
[241] |
Vilchèze, C., The mechanism of isoniazid killing: clarity through the scope of genetics Annu. Rev. Microbiol., 61 (2007),pp. 35-50
|
[242] |
Vilchèze, C., Wang, F., Arai, M. et al. Nat. Med., 12 (2006),pp. 1027-1029
|
[243] |
Villemagne, B., Crauste, C., Flipo, M. et al. Tuberculosis: the drug development pipeline at a glance Eur. J. Med. Chem., 51 (2012),pp. 1-16
|
[244] |
Wade, M.M., Zhang, Y. Front. Biosci., 9 (2004),pp. 975-994
|
[245] |
Wagenlehner, F.M.E., Naber, K.G. Fluoroquinolone antimicrobial agents in the treatment of prostatitis and recurrent urinary tract infections in men Curr. Infect. Dis. Rep., 7 (2005),pp. 9-16
|
[246] |
Walker, T.M., Kohl, T.A., Omar, S.V. et al. Lancet Infect. Dis., 15 (2015),pp. 1193-1202
|
[247] |
Wengenack, N.L., Uhl, J.R., Amand, A.L.S. et al. J. Infect. Dis., 176 (1997),pp. 722-727
|
[248] |
Wilming, M., Johnsson, K. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid Angew. Chem. Int. Ed. Engl., 38 (1999),pp. 2588-2590
|
[249] |
Wilson, R., Kumar, P., Parashar, V. et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis Nat. Chem. Biol., 9 (2013),pp. 499-506
|
[250] |
Wilson, T.M., Collins, D.M. Mol. Microbiol., 19 (1996),pp. 1025-1034
|
[251] |
Winder, F.G., Collins, P.B. J. Gen. Microbiol., 63 (1970),pp. 41-48
|
[252] |
Witney, A.A., Gould, K.A., Arnold, A. et al. Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases J. Clin. Microbiol., 53 (2015),pp. 1473-1483
|
[253] |
Wolucka, B.A., McNeil, M.R., de Hoffmann, E. et al. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria J. Biol. Chem., 269 (1994),pp. 23328-23335
|
[254] |
Wong, S.Y., Lee, J.S., Kwak, H.K. et al. Antimicrob. Agents Chemother., 55 (2011),pp. 2515-2522
|
[255] |
WHO
|
[256] |
Xia, Q., Zhao, L.L., Li, F. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 1690-1695
|
[257] |
Xu, P., Wu, J., Yang, C. et al. Tuberculosis, 98 (2016),pp. 56-61
|
[258] |
Yadav, R., Sethi, S., Dhatwalia, S.K. et al. Int. J. Tuberc. Lung Dis., 17 (2013),pp. 251-257
|
[259] |
Yeager, R.L., Munroe, W.G.C., Dessau, F.I. Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis Am. Rev. Tuberc. Pulmon. Dis., 65 (1952),pp. 523-546
|
[260] |
Yoon, J.H., Nam, J.S., Kim, K.J. et al. J. Microbiol. Methods, 92 (2013),pp. 301-306
|
[261] |
Yuan, X., Zhang, T., Kawakami, K. et al. J. Clin. Microbiol., 50 (2012),pp. 2404-2413
|
[262] |
Zaunbrecher, M.A., Sikes, R.D., Metchock, B. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 20004-20009
|
[263] |
Zhang, N., Torrelles, J.B., McNeil, M.R. et al. Mol. Microbiol., 50 (2003),pp. 69-76
|
[264] |
Zhang, Q., Wan, B., Zhou, A. et al. Gene, 582 (2016),pp. 128-136
|
[265] |
Zhang, S., Chen, J., Shi, W. et al. Emerg. Microbes Infect., 2 (2013),p. e34
|
[266] |
Zhang, S., Chen, J., Cui, P. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 2542-2544
|
[267] |
Zhang, S., Chen, J., Cui, P. et al. J. Antimicrob. Chemother., 70 (2015),pp. 2507-2510
|
[268] |
Zhang, Y., Heym, B., Allen, B. et al. Nature, 358 (1992),pp. 591-593
|
[269] |
Zhang, Y., Vilcheze, C., Jacobs, W.R.
|
[270] |
Zhang, Y., Yew, W.W. Int. J. Tuberc. Lung Dis., 13 (2009),pp. 1320-1330
|
[271] |
Zhang, Y., Yew, W.W. Int. J. Tuberc. Lung Dis., 19 (2015),pp. 1276-1289
|
[272] |
Zhang, Z., Pang, Y., Wang, Y. et al. Int. J. Antimicrob. Agents, 43 (2014),pp. 231-235
|
[273] |
Zhang, Z., Wang, Y., Pang, Y. et al. J. Clin. Microbiol., 52 (2014),pp. 638-641
|
[274] |
Zhao, F., Wang, X.D., Erber, L.N. et al. Antimicrob. Agents Chemother., 58 (2014),pp. 1479-1487
|
[275] |
Zhao, L.L., Sun, Q., Liu, H.C. et al. Antimicrob. Agents Chemother., 59 (2015),pp. 2045-2050
|
[276] |
Zhao, Y., Xu, S., Wang, L. et al. National survey of drug-resistant tuberculosis in China N. Engl. J. Med., 366 (2012),pp. 2161-2170
|
[277] |
Zheng, J., Rubin, E.J., Bifani, P. et al. J. Biol. Chem., 288 (2013),pp. 23447-23456
|
[278] |
Zhu, M., Namdar, R., Stambaugh, J.J. et al. Population pharmacokinetics of ethionamide in patients with tuberculosis Tuberculosis, 82 (2002),pp. 91-96
|