5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 12
Dec.  2016
Turn off MathJax
Article Contents

BLOC-2 subunit HPS6 deficiency affects the tubulation and secretion of von Willebrand factor from mouse endothelial cells

doi: 10.1016/j.jgg.2016.09.007
More Information
  • Corresponding author: E-mail address: d.cutler@ucl.ac.uk (Daniel F. Cutler); E-mail address: liwei@bch.com.cn (Wei Li)
  • Received Date: 2016-07-12
  • Accepted Date: 2016-09-02
  • Rev Recd Date: 2016-08-20
  • Available Online: 2016-10-21
  • Publish Date: 2016-12-20
  • Hermansky-Pudlak syndrome (HPS) is a recessive disorder with bleeding diathesis, which has been linked to platelet granule defects. Both platelet granules and endothelial Weibel-Palade bodies (WPBs) are members of lysosome-related organelles (LROs) whose formation is regulated by HPS protein associated complexes such as BLOC (biogenesis of lysosome-related organelles complex) -1, -2, -3, AP-3 (adaptor protein complex-3) and HOPS (homotypic fusion and protein sorting complex). Von Willebrand factor (VWF) is critical to hemostasis, which is stored in a highly-multimerized form as tubules in the WPBs. In this study, we found the defective, but varying, release of VWF into plasma after desmopressin (DDAVP) stimulation in HPS1 (BLOC-3 subunit), HPS6 (BLOC-2 subunit), and HPS9 (BLOC-1 subunit) deficient mice. In particular, VWF tubulation, a critical step in VWF maturation, was impaired in HPS6 deficient WPBs. This likely reflects a defective endothelium, contributing to the bleeding tendency in HPS mice or patients. The differentially defective regulated release of VWF in these HPS mouse models suggests the need for precise HPS genotyping before DDAVP administration to HPS patients.
  • loading
  • [1]
    Berriman, J.A., Li, S., Hewlett, L.J. et al. Structural organization of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial cells Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 17407-17412
    [2]
    Bilora, F., Dei Rossi, C., Girolami, B. et al. Do hemophilia A and von Willebrand disease protect against carotid atherosclerosis? A comparative study between coagulopathics and normal subjects by means of carotid echo-color Doppler scan Clin. Appl. Thromb. Hemost., 5 (1999),pp. 232-235
    [3]
    Cordova, A., Barrios, N.J., Ortiz, I. et al. Poor response to desmopressin acetate (DDAVP) in children with Hermansky-Pudlak syndrome Pediatr. Blood Cancer, 44 (2005),pp. 51-54
    [4]
    Ferraro, F., Kriston-Vizi, J., Metcalf, D.J. et al. A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells Dev. Cell, 29 (2014),pp. 292-304
    [5]
    Fowler, W.E., Fretto, L.J., Hamilton, K.K. et al. Substructure of human von Willebrand factor J. Clin. Investig., 76 (1985),pp. 1491-1500
    [6]
    Gardner, J.M., Wildenberg, S.C., Keiper, N.M. et al. The mouse pale ear (ep) mutation is the homologue of human Hermansky-Pudlak syndrome Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 9238-9243
    [7]
    Griggs, T.R., Reddick, R.L., Sultzer, D. et al. Susceptibility to atherosclerosis in aortas and coronary arteries of swine with von Willebrand's disease Am. J. Pathol., 102 (1981),pp. 137-145
    [8]
    Hannah, M.J., Hume, A.N., Arribas, M. et al. Weibel-Palade bodies recruit Rab27 by a content-driven, maturation-dependent mechanism that is independent of cell type J. Cell Sci., 116 (2003),pp. 3939-3948
    [9]
    Harrison-Lavoie, K.J., Michaux, G., Hewlett, L. et al. P-selectin and CD63 use different mechanisms for delivery to Weibel-Palade bodies Traffic, 7 (2006),pp. 647-662
    [10]
    Huang, L., Kuo, Y.M., Gitschier, J. Nat. Genet., 23 (1999),pp. 329-332
    [11]
    Huang, R.H., Wang, Y., Roth, R. et al. Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 482-487
    [12]
    Huizing, M., Helip-Wooley, A., Westbroek, W. et al. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics Annu. Rev. Genomics Hum. Genet., 9 (2008),pp. 359-386
    [13]
    Jin, Y., Liu, Y., Antonyak, M. et al. Isolation and characterization of vascular endothelial cells from murine heart and lung Methods Mol. Biol., 843 (2012),pp. 147-154
    [14]
    Levy, G.G., Nichols, W.C., Lian, E.C. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura Nature, 413 (2001),pp. 488-494
    [15]
    Li, W., He, M., Zhou, H. et al. Mutational data integration in gene-oriented files of the Hermansky-Pudlak Syndrome database Hum. Mutat., 27 (2006),pp. 402-407
    [16]
    Lui-Roberts, W.W., Collinson, L.M., Hewlett, L.J. et al. An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells J. Cell Biol., 170 (2005),pp. 627-636
    [17]
    Mannucci, P.M. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years Blood, 90 (1997),pp. 2515-2521
    [18]
    Meng, R., Wu, J., Harper, D.C. et al. Defective release of alpha granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models Blood, 125 (2015),pp. 1623-1632
    [19]
    Metcalf, D.J., Nightingale, T.D., Zenner, H.L. et al. Formation and function of Weibel-Palade bodies J. Cell Sci., 121 (2008),pp. 19-27
    [20]
    Methia, N., Andre, P., Denis, C.V. et al. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice Blood, 98 (2001),pp. 1424-1428
    [21]
    Michaux, G., Abbitt, K.B., Collinson, L.M. et al. The physiological function of von Willebrand's factor depends on its tubular storage in endothelial Weibel-Palade bodies Dev. Cell, 10 (2006),pp. 223-232
    [22]
    Michaux, G., Hewlett, L.J., Messenger, S.L. et al. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor Blood, 102 (2003),pp. 2452-2458
    [23]
    Nightingale, T., Cutler, D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story J. Thromb. Haemost., 11 (2013),pp. 192-201
    [24]
    Nightingale, T.D., Pattni, K., Hume, A.N. et al. Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells Blood, 113 (2009),pp. 5010-5018
    [25]
    Paigen, B., Holmes, P.A., Novak, E.K. et al. Analysis of atherosclerosis susceptibility in mice with genetic defects in platelet function Arteriosclerosis, 10 (1990),pp. 648-652
    [26]
    Purvis, A.R., Sadler, J.E. A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization J. Biol. Chem., 279 (2004),pp. 49982-49988
    [27]
    Romani de Wit, T., Rondaij, M.G., Hordijk, P.L. et al. Real-time imaging of the dynamics and secretory behavior of Weibel-Palade bodies Arterioscler. Thromb. Vasc. Biol., 23 (2003),pp. 755-761
    [28]
    Rondaij, M.G., Bierings, R., Kragt, A. et al. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells Arterioscler. Thromb. Vasc. Biol., 26 (2006),pp. 1002-1007
    [29]
    Rybaltowski, M., Suzuki, Y., Mogami, H. et al. Pflugers Arch., 461 (2011),pp. 623-633
    [30]
    Sadler, J.E., Mannucci, P.M., Berntorp, E. et al. Impact, diagnosis and treatment of von Willebrand disease Thromb. Haemost., 84 (2000),pp. 160-174
    [31]
    Springer, T.A. Biology and physics of von Willebrand factor concatamers J. Thromb. Haemost., 9 (2011),pp. 130-143
    [32]
    Valentijn, K.M., Sadler, J.E., Valentijn, J.A. et al. Functional architecture of Weibel-Palade bodies Blood, 117 (2011),pp. 5033-5043
    [33]
    Valentijn, K.M., Valentijn, J.A., Jansen, K.A. et al. A new look at Weibel-Palade body structure in endothelial cells using electron tomography J. Struct. Biol., 161 (2008),pp. 447-458
    [34]
    Van Dorp, D.B., Wijermans, P.W., Meire, F. et al. The Hermansky-Pudlak syndrome. Variable reaction to 1-desamino-8D-arginine vasopressin for correction of the bleeding time Ophthalmic Paediatr. Genet., 11 (1990),pp. 237-244
    [35]
    van Galen, K.P., Tuinenburg, A., Smeets, E.M. et al. Von Willebrand factor deficiency and atherosclerosis Blood Rev., 26 (2012),pp. 189-196
    [36]
    Vischer, U.M., Wagner, D.D. Von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies Blood, 83 (1994),pp. 3536-3544
    [37]
    Wei, A.H., Li, W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis Pigment. Cell Melanoma Res., 26 (2013),pp. 176-192
    [38]
    Weibel, E.R., Palade, G.E. New cytoplasmic components in arterial endothelia J. Cell Biol., 23 (1964),pp. 101-112
    [39]
    Zatik, J., Poka, R., Borsos, A. et al. Variable response of Hermansky-Pudlak syndrome to prophylactic administration of 1-desamino 8D-arginine in subsequent pregnancies Eur. J. Obstet. Gynecol. Reprod. Biol., 104 (2002),pp. 165-166
    [40]
    Zenner, H.L., Collinson, L.M., Michaux, G. et al. High-pressure freezing provides insights into Weibel-Palade body biogenesis J. Cell Sci., 120 (2007),pp. 2117-2125
    [41]
    Zhang, Q., Zhao, B., Li, W. et al. Nat. Genet., 33 (2003),pp. 145-153
    [42]
    Zhang, Z., Hao, C.J., Li, C.G. et al. PLoS Genet., 10 (2014),p. e1004124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (97) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return