[1] |
Allshire, R.C., Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet., 9 (2008),pp. 923-937
|
[2] |
Baird, D.M., Farr, C.J. The organization and function of chromosomes EMBO Rep., 7 (2006),pp. 372-376
|
[3] |
Bedoyan, J.K., Flore, L.A., Alkatib, A. et al. Transmission of ring chromosome 13 from a mother to daughter with both having a 46,XX, r(13)(p13q34) karyotype Am. J. Med. Genet., 129A (2004),pp. 316-320
|
[4] |
Carpenter, A.T. Chiasma function Cell, 77 (1994),pp. 957-962
|
[5] |
Cheng, Z. Analyzing meiotic chromosomes in rice Methods Mol. Biol., 990 (2013),pp. 125-134
|
[6] |
Cheng, Z., Dong, F., Langdon, T. et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon Plant Cell, 14 (2002),pp. 1691-1704
|
[7] |
Cifuentes, M., Rivard, M., Pereira, L. et al. PLoS One, 8 (2013),p. e72431
|
[8] |
Cleveland, D.W., Mao, Y., Sullivan, K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling Cell, 112 (2003),pp. 407-421
|
[9] |
Dong, Q., Han, F. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis Plant J., 71 (2012),pp. 800-809
|
[10] |
Elbaum, R., Zaltzman, L., Burgert, I. et al. The role of wheat awns in the seed dispersal unit Science, 316 (2007),pp. 884-886
|
[11] |
Fang, Y.Y., Eyre, H.J., Bohlander, S.K. et al. Mechanisms of small ring formation suggested by the molecular characterization of two small accessory ring chromosomes derived from chromosome 4 Am. J. Hum. Genet., 57 (1995),pp. 1137-1142
|
[12] |
Gao, Z., Fu, S., Dong, Q. et al. Inactivation of a centromere during the formation of a translocation in maize Chromosom. Res., 19 (2011),pp. 755-761
|
[13] |
Gong, Z., Liu, X., Tang, D. et al. Non-homologous chromosome pairing and crossover formation in haploid rice meiosis Chromosoma, 120 (2011),pp. 47-60
|
[14] |
Gregan, J., Polakova, S., Zhang, L. et al. Merotelic kinetochore attachment: causes and effects Trends Cell Biol., 21 (2011),pp. 374-381
|
[15] |
Griffith, J.D., Comeau, L., Rosenfield, S. et al. Mammalian telomeres end in a large duplex loop Cell, 97 (1999),pp. 503-514
|
[16] |
Guilherme, R.S., Meloni, V.F., Kim, C.A. et al. Mechanisms of ring chromosome formation, ring instability and clinical consequences BMC Med. Genet., 12 (2011),p. 171
|
[17] |
Han, F., Gao, Z., Birchler, J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize Plant Cell, 21 (2009),pp. 1929-1939
|
[18] |
Han, F., Gao, Z., Yu, W. et al. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize Plant Cell, 19 (2007),pp. 3853-3863
|
[19] |
Hirose, Y., Suzuki, R., Ohba, T. et al. Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I PLoS Genet., 7 (2011),p. e1001329
|
[20] |
Hockner, M., Utermann, B., Erdel, M. et al. Am. J. Med. Genet., 146A (2008),pp. 925-929
|
[21] |
Kosztolanyi, G. The genetics and clinical characteristics of constitutional ring chromosomes J. Assoc. Genet. Technol., 35 (2009),pp. 44-48
|
[22] |
Ledbetter, D.H., Riccardi, V.M., Au, W.W. et al. Ring chromosome 15: phenotype, Ag-NOR analysis, secondary aneuploidy, and associated chromosome instability Cytogenet. Cell Genet., 27 (1980),pp. 111-122
|
[23] |
Liu, Y., Su, H., Pang, J. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. E1263-E1271
|
[24] |
Lukaszewski, A.J. Genetics, 140 (1995),pp. 1069-1085
|
[25] |
Ma, J., Wing, R.A., Bennetzen, J.L. et al. Plant centromere organization: a dynamic structure with conserved functions Trends Genet., 23 (2007),pp. 134-139
|
[26] |
Maguire, M.P. Meiotic behavior of a tiny fragment chromosome that carries a transposed centromere Genome, 29 (1987),pp. 744-747
|
[27] |
McClintock, B. Proc. Natl. Acad. Sci. U. S. A., 18 (1932),pp. 677-681
|
[28] |
McClintock, B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes Genetics, 23 (1938),pp. 315-376
|
[29] |
McKnight, T.D., Shippen, D.E. Plant telomere biology Plant Cell, 16 (2004),pp. 794-803
|
[30] |
Murata, M., Shibata, F., Yokota, E. The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana Chromosoma, 115 (2006),pp. 311-319
|
[31] |
Murata, M., Yokota, E., Shibata, F. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 7511-7516
|
[32] |
Naito, T., Matsuura, A., Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues Nat. Genet., 20 (1998),pp. 203-206
|
[33] |
Nasuda, S., Hudakova, S., Schubert, I. et al. Stable barley chromosomes without centromeric repeats Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 9842-9847
|
[34] |
Nicklas, R.B. How cells get the right chromosomes Science, 275 (1997),pp. 632-637
|
[35] |
Penacho, V., Galan, F., Martin-Bayon, T.A. et al. Prenatal diagnosis of a female fetus with ring chromosome 9, 46,XX,r(9)(p24q34), and a de novo interstitial 9p deletion Cytogenet. Genome Res., 144 (2014),pp. 275-279
|
[36] |
Rhoades, M.M. Studies of a telocentric chromosome in maize with reference to the stability of its centromere Genetics, 25 (1940),pp. 483-520
|
[37] |
Sakuno, T., Tanaka, K., Hauf, S. et al. Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I Dev. Cell, 21 (2011),pp. 534-545
|
[38] |
Shang, W.H., Hori, T., Martins, N.M. et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres Dev. Cell, 24 (2013),pp. 635-648
|
[39] |
Shao, T., Tang, D., Wang, K. et al. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis Plant Physiol., 156 (2011),pp. 1386-1396
|
[40] |
Sodre, C.P., Guilherme, R.S., Meloni, V.F. et al. Ring chromosome instability evaluation in six patients with autosomal rings Genet. Mol. Res., 9 (2010),pp. 134-143
|
[41] |
Thakur, J., Sanyal, K. Genome Res., 23 (2013),pp. 638-652
|
[42] |
Topp, C.N., Okagaki, R.J., Melo, J.R. et al. Identification of a maize neocentromere in an oat-maize addition line Cytogenet. Genome Res., 124 (2009),pp. 228-238
|
[43] |
Vaur, S., Cubizolles, F., Plane, G. et al. Control of Shugoshin function during fission-yeast meiosis Curr. Biol., 15 (2005),pp. 2263-2270
|
[44] |
Vos, L.J., Famulski, J.K., Chan, G.K. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly Biochem. Cell Biol., 84 (2006),pp. 619-639
|
[45] |
Warmington, J.R., Anwar, R., Newlon, C.S. et al. A 'hot-spot' for Ty transposition on the left arm of yeast chromosome III Nucleic Acids Res., 14 (1986),pp. 3475-3485
|
[46] |
Yokota, E., Nagaki, K., Murata, M. Chromosoma, 119 (2010),pp. 361-369
|
[47] |
Yokota, E., Shibata, F., Nagaki, K. et al. Chromosom. Res., 19 (2011),pp. 999-1012
|
[48] |
Zhang, H., Koblizkova, A., Wang, K. et al. Plant Cell, 26 (2014),pp. 1436-1447
|
[49] |
Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
|
[50] |
Zollino, M., Seminara, L., Orteschi, D. et al. The ring 14 syndrome: clinical and molecular definition Am. J. Med. Genet., 149A (2009),pp. 1116-1124
|