[1] |
Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
|
[2] |
Boisset, JC., van Cappellen, W., Andrieu-Soler, C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium Nature, 464 (2010),pp. 116-120
|
[3] |
Burns, C.E., Traver, D., Mayhall, E. et al. Hematopoietic stem cell fate is established by the Notch-Runx pathway Genes Dev., 19 (2005),pp. 2331-2342
|
[4] |
Ciau-Uitz, A., Monteiro, R., Kirmizitas, A. et al. Developmental hematopoiesis: ontogeny, genetic programming and conservation Exp. Hematol., 42 (2014),pp. 669-683
|
[5] |
Cumano, A., Dieterlen-Lievre, F., Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura Cell, 86 (1996),pp. 907-916
|
[6] |
De Kleer, I., Willems, F., Lambrecht, B. et al. Ontogeny of myeloid cells Front. Immunol., 5 (2014),p. 423
|
[7] |
Detrich, H.W., Kieran, M.W., Chan, F.Y. et al. Intraembryonic hematopoietic cell migration during vertebrate development Proc. Natl. Acad. Sci. U. S. A., 92 (1995),pp. 10713-10717
|
[8] |
Friedman, A.D., Landschulz, W.H., McKnight, S.L. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells Genes Dev., 3 (1989),pp. 1314-1322
|
[9] |
Friedman, A.D. C/EBPα in normal and malignant myelopoiesis Int. J. Hematol., 101 (2015),pp. 330-341
|
[10] |
Gering, M., Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos Dev. Cell, 8 (2005),pp. 389-400
|
[11] |
Ginhoux, F., Greter, M., Leboeuf, M. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages Science, 330 (2010),pp. 841-845
|
[12] |
Gomez Perdiguero, E., Klapproth, K., Schulz, C. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors Nature, 518 (2015),pp. 547-551
|
[13] |
Herbomel, P., Thisse, B., Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process Dev. Biol., 238 (2001),pp. 274-288
|
[14] |
Hoeffel, G., Wang, Y., Greter, M. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages J. Exp. Med., 209 (2012),pp. 1167-1181
|
[15] |
Hoeffel, G., Chen, J., Lavin, Y. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages Immunity, 42 (2015),pp. 665-678
|
[16] |
Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[17] |
Jagannathan-Bogdan, Madhunita, Zon, et al. Heamtopoiesis Development, 140 (2013),pp. 2463-2467
|
[18] |
Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
|
[19] |
Jin, H., Li, L., Xu, J. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression Blood, 119 (2012),pp. 5239-5249
|
[20] |
Jones, L.C., Lin, M.-L., Chen, S.-S. et al. Blood, 99 (2002),pp. 2032-2036
|
[21] |
Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
|
[22] |
Landschulz, W.H., Johnson, P.F., Adashi, E.Y. et al. Isolation of a recombinant copy of the gene encoding C/EBP Genes Dev., 2 (1988),pp. 786-800
|
[23] |
Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
|
[24] |
Li, L., Jin, H., Xu, J. et al. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis Blood, 117 (2011),pp. 1359-1369
|
[25] |
Liang, H.C., Zúñiga-Pflücker, J.C. Hematopoiesis: from start to immune reconstitution potential Stem Cell Res. Ther., 6 (2015),p. 52
|
[26] |
Lieschke, G.J., Oates, A.C., Crowhurst, M.O. et al. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish Blood, 98 (2001),pp. 3087-3096
|
[27] |
Lieschke, G.J., Oates, A.C., Paw, B.H. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning Dev. Biol., 246 (2002),pp. 274-295
|
[28] |
Liongue, C., Hall, C.J., O'Connell, B.A. et al. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration Blood, 113 (2009),pp. 2535-2546
|
[29] |
Liu, T.X., Rhodes, J., Deng, M. et al. Dominant-interfering C/EBPalpha stimulates primitive erythropoiesis in zebrafish Exp. Hematol., 35 (2007),pp. 230-239
|
[30] |
Lyons, S.E., Shue, B.C., Lei, L. et al. Gene, 281 (2001),pp. 43-51
|
[31] |
Medvinsky, A.L., Samoylina, N.L., Muller, A.M. et al. An early pre-liver intraembryonic source of CFU-S in the developing mouse Nature, 364 (1993),pp. 64-67
|
[32] |
Moore, M.A., Metcalf, D. Br. J. Haematol., 18 (1970),pp. 279-296
|
[33] |
Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control Trends Cell Biol., 17 (2007),pp. 318-324
|
[34] |
Rosenbauer, F., Tenen, D.G. Transcription factors in myeloid development: balancing differentiation with transformation Nat. Rev. Immunol., 7 (2007),pp. 105-117
|
[35] |
Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
|
[36] |
Schulz, C., Gomez Perdiguero, E., Chorro, L. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells Science, 336 (2012),pp. 86-90
|
[37] |
Sood, R., English, M.A., Belele, C.L. et al. Blood, 115 (2010),pp. 2806-2809
|
[38] |
Ward, A.C., McPhee, D.O., Condron, M.M. et al. Blood, 102 (2003),pp. 3238-3240
|
[39] |
Westerfield, M.
|
[40] |
Xu, J., Du, L., Wen, Z.L. Myelopoiesis during zebrafish early development J. Genet. Genomics, 39 (2012),pp. 435-442
|
[41] |
Xu, J., Zhu, L., He, S. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish Dev. Cell, 34 (2015),pp. 632-641
|
[42] |
Yamanaka, R., Barlow, C., Lekstrom-Himes, J. et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 13187-13192
|
[43] |
Yuan, H., Zhou, J., Deng, M. et al. Sumoylation of CCAAT/enhancer-binding protein α promotes the biased primitive hematopoiesis of zebrafish Blood, 117 (2011),pp. 7014-7020
|
[44] |
Yuan, H., Zhang, T., Liu, X. et al. Sci. Rep., 5 (2015),p. 9011
|
[45] |
Zakrzewska, A., Cui, C., Stockhammer, O.W. et al. Macrophage-specific gene functions in Spi1-directed innate immunity Blood, 116 (2010),pp. e1-e11
|
[46] |
Zhang, D.E., Zhang, P., Wang, N.D. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 569-574
|
[47] |
Zhang, P., Iwasaki-Arai, J., Iwasaki, H. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha Immunity, 21 (2004),pp. 853-863
|
[48] |
Zhen, F.H., Lan, Y.H., Yan, B. et al. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms Development, 140 (2013),pp. 3977-3985
|