[1] |
Ahlenstiel, C.L., Lim, H.G.W., Cooper, D.A. et al. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells Nucleic Acids Res., 40 (2012),pp. 1579-1595
|
[2] |
Ameyar-Zazoua, M., Rachez, C., Souidi, M. et al. Argonaute proteins couple chromatin silencing to alternative splicing Nat. Struct. Mol. Biol., 19 (2012),pp. 998-1004
|
[3] |
Arribas-Layton, M., Wu, D., Lykke-Andersen, J. et al. Structural and functional control of the eukaryotic mRNA decapping machinery Biochim. Biophys. Acta, 1829 (2013),pp. 580-589
|
[4] |
Avraham, R., Yarden, Y. Regulation of signalling by microRNAs Biochem. Soc. Trans., 40 (2012),pp. 26-30
|
[5] |
Azzam, G., Smibert, P., Lai, E.C. et al. Dev. Biol., 365 (2012),pp. 384-394
|
[6] |
Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
|
[7] |
Bagga, S., Bracht, J., Hunter, S. et al. Cell, 122 (2005),pp. 553-563
|
[8] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[9] |
Baumberger, N., Baulcombe, D.C. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 11928-11933
|
[10] |
Berezikov, E., Liu, N., Flynt, A.S. et al. Nat. Genet., 42 (2006),pp. 6-10
|
[11] |
Béthune, J., Artus-Revel, C.G., Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells EMBO Rep., 13 (2012),pp. 716-723
|
[12] |
Bohmert, K., Camus, I., Bellini, C. et al. EMBO J., 17 (1998),pp. 170-180
|
[13] |
Bortolamiol-Becet, D., Hu, F., Jee, D. et al. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase Tailor Mol. Cell, 59 (2015),pp. 217-228
|
[14] |
Braun, J.E., Truffault, V., Boland, A. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation Nat. Struct. Mol. Biol., 19 (2012),pp. 1324-1331
|
[15] |
Brennecke, J., Aravin, A.A., Stark, A. et al. Cell, 128 (2007),pp. 1089-1103
|
[16] |
Buckley, B.A., Burkhart, K.B., Gu, S.G. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality Nature, 489 (2012),pp. 447-451
|
[17] |
Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
|
[18] |
Carthew, R.W., Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs Cell, 136 (2009),pp. 642-655
|
[19] |
Cernilogar, F.M., Onorati, M.C., Kothe, G.O. et al. Nature, 480 (2011),pp. 391-395
|
[20] |
Chandradoss, S.D., Schirle, N.T., Szczepaniak, M. et al. A Dynamic search process underlies microRNA targeting Cell, 162 (2015),pp. 96-107
|
[21] |
Chekulaeva, M., Mathys, H., Zipprich, J.T. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs Nat. Struct. Mol. Biol., 18 (2011),pp. 1218-1226
|
[22] |
Chen, Y., Boland, A., Kuzuoǧlu-Öztürk, D. et al. A DDX6-CNOT1 complex and W-Binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing Mol. Cell, 54 (2014),pp. 737-750
|
[23] |
Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing Nature, 436 (2005),pp. 740-744
|
[24] |
Chung, W.-J., Agius, P., Westholm, J.O. et al. Genome Res., 21 (2011),pp. 286-300
|
[25] |
Czech, B., Zhou, R., Erlich, Y. et al. Mol. Cell, 36 (2009),pp. 445-456
|
[26] |
Deshpande, G., Calhoun, G., Schedl, P. Genes Dev., 19 (2005),pp. 1680-1685
|
[27] |
Diederichs, S., Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression Cell, 131 (2007),pp. 1097-1108
|
[28] |
Djuranovic, S., Nahvi, A., Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay Science, 336 (2012),pp. 237-240
|
[29] |
Drinnenberg, I.A., Weinberg, D.E., Xie, K.T. et al. RNAi in budding yeast Science, 326 (2009),pp. 544-550
|
[30] |
Eichhorn, S.W., Guo, H., McGeary, S.E. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues Mol. Cell, 56 (2014),pp. 104-115
|
[31] |
Eulalio, A., Huntzinger, E., Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay Nat. Struct. Mol. Biol., 15 (2008),pp. 346-353
|
[32] |
Eulalio, A., Rehwinkel, J., Stricker, M. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing Genes Dev., 21 (2007),pp. 2558-2570
|
[33] |
Fabian, M.R., Mathonnet, G., Sundermeier, T. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation Mol. Cell, 35 (2009),pp. 868-880
|
[34] |
Fabian, M.R., Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC Nat. Struct. Mol. Biol., 19 (2012),pp. 586-593
|
[35] |
Faehnle, C.R., Elkayam, E., Haase, A.D. et al. The making of a slicer: activation of human Argonaute-1 Cell Rep., 3 (2013),pp. 1901-1909
|
[36] |
Flynt, A.S., Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity Nat. Rev. Genet., 9 (2008),pp. 831-842
|
[37] |
Forstemann, K., Horwich, M.D., Wee, L. et al. Cell, 130 (2007),pp. 287-297
|
[38] |
Forstemann, K., Tomari, Y., Du, T. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein PLoS Biol., 3 (2005),p. e236
|
[39] |
Fu, S., Nien, C.-Y., Liang, H.-L. et al. Development, 141 (2014),pp. 2108-2118
|
[40] |
Fukao, A., Mishima, Y., Takizawa, N. et al. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans Mol. Cell, 56 (2014),pp. 79-89
|
[41] |
Fukaya, T., Iwakawa, H.-O., Tomari, Y. Mol. Cell, 56 (2014),pp. 67-78
|
[42] |
Fukaya, T., Tomari, Y. Mol. Cell, 48 (2012),pp. 825-836
|
[43] |
Gagnon, K.T., Li, L., Chu, Y. et al. RNAi factors are present and active in human cell nuclei Cell Rep., 6 (2013),pp. 211-221
|
[44] |
Ghildiyal, M., Xu, J., Seitz, H. et al. RNA, 16 (2010),pp. 43-56
|
[45] |
Gibbings, D., Mostowy, S., Jay, F. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity Nat. Cell Biol., 14 (2012),pp. 1314-1321
|
[46] |
Giraldez, A.J., Mishima, Y., Rihel, J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs Science, 312 (2006),pp. 75-79
|
[47] |
Gregory, R.I., Chendrimada, T.P., Cooch, N. et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing Cell, 123 (2005),pp. 631-640
|
[48] |
Grimaud, C., Bantignies, F., Pal-Bhadra, M. et al. RNAi components are required for nuclear clustering of Polycomb group response elements Cell, 124 (2006),pp. 957-971
|
[49] |
Gu, W., Lee, H.C., Chaves, D. et al. Cell, 151 (2012),pp. 1488-1500
|
[50] |
Guang, S., Bochner, A.F., Burkhart, K.B. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription Nature, 465 (2010),pp. 1097-1101
|
[51] |
Guang, S., Bochner, A.F., Pavelec, D.M. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus Science, 321 (2008),pp. 537-541
|
[52] |
Guo, H., Ingolia, N.T., Weissman, J.S. et al. Mammalian microRNAs predominantly act to decrease target mRNA levels Nature, 466 (2010),pp. 835-840
|
[53] |
Hauptmann, J., Dueck, A., Harlander, S. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes Nat. Struct. Mol. Biol., 20 (2013),pp. 814-817
|
[54] |
Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J. et al. Plant Cell, 22 (2010),pp. 321-334
|
[55] |
Helwak, A., Kudla, G., Dudnakova, T. et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding Cell, 153 (2013),pp. 654-665
|
[56] |
Hendrickson, D.G., Hogan, D.J., McCullough, H.L. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA PLoS Biol., 7 (2009),p. e1000238
|
[57] |
Herzog, V.A., Ameres, S.L. Approaching the golden fleece a molecule at a time: biophysical insights into Argonaute-instructed nucleic acid interactions Mol. Cell, 59 (2015),pp. 4-7
|
[58] |
Höck, J., Meister, G. The Argonaute protein family Genome Biol., 9 (2008),p. 210
|
[59] |
Horman, S.R., Janas, M.M., Litterst, C. et al. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets Mol. Cell, 50 (2013),pp. 356-367
|
[60] |
Huang, V., Li, L.C. Demystifying the nuclear function of Argonaute proteins RNA Biol., 11 (2014),pp. 18-24
|
[61] |
Humphreys, D.T., Westman, B.J., Martin, D.I.K. et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 16961-16966
|
[62] |
Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay Nat. Rev. Genet., 12 (2011),pp. 99-110
|
[63] |
Huntzinger, E., Kuzuoglu-Öztürk, D., Braun, J.E. et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets Nucleic Acids Res., 41 (2013),pp. 978-994
|
[64] |
Hutvagner, G., Simard, M.J. Argonaute proteins: key players in RNA silencing Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 22-32
|
[65] |
Iki, T., Yoshikawa, M., Nishikiori, M. et al. Mol. Cell, 39 (2010),pp. 282-291
|
[66] |
Ipsaro, J.J., Joshua-Tor, L. From guide to target: molecular insights into eukaryotic RNA-interference machinery Nat. Struct. Mol. Biol., 22 (2015),pp. 20-28
|
[67] |
Iwasaki, S., Kobayashi, M., Yoda, M. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes Mol. Cell, 39 (2010),pp. 292-299
|
[68] |
Jackson, R.J., Hellen, C.U.T., Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 113-127
|
[69] |
Jannot, G., Boisvert, M.-E.L., Banville, I.H. et al. RNA, 14 (2008),pp. 829-835
|
[70] |
Jinek, M., Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference Nature, 457 (2009),pp. 405-412
|
[71] |
Jinek, M., Fabian, M.R., Coyle, S.M. et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation Nat. Struct. Mol. Biol., 17 (2010),pp. 238-240
|
[72] |
Johnston, M., Geoffroy, M.C., Sobala, A. et al. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells Mol. Biol. Cell., 21 (2010),pp. 1462-1469
|
[73] |
Johnston, M., Hutvagner, G. Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation Silence, 2 (2011),p. 5
|
[74] |
Jones, C.I., Grima, D.P., Waldron, J.A. et al. RNA Biol., 10 (2013),pp. 1345-1355
|
[75] |
Kawamata, T., Seitz, H., Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding Nat. Struct. Mol. Biol., 16 (2009),pp. 953-960
|
[76] |
Kawamata, T., Tomari, Y. Making RISC Trends Biochem. Sci., 35 (2010),pp. 368-376
|
[77] |
Khvorova, A., Reynolds, A., Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias Cell, 115 (2003),pp. 209-216
|
[78] |
Kim, K., Lee, Y.S., Harris, D. et al. Cold Spring Harb. Symp. Quant. Biol., 71 (2006),pp. 39-44
|
[79] |
Kim, V.N., Nam, J.W. Genomics of microRNA Trends Genet., 22 (2006),pp. 165-173
|
[80] |
Kozlov, G., Safaee, N., Rosenauer, A. et al. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein J. Biol. Chem., 285 (2010),pp. 13599-13606
|
[81] |
Krützfeldt, J., Rajewsky, N., Braich, R. et al. Nature, 438 (2005),pp. 685-689
|
[82] |
Kuzuoǧlu-Öztürk, D., Huntzinger, E., Schmidt, S. et al. Nucleic Acids Res., 40 (2012),pp. 5651-5665
|
[83] |
Kwak, P.B., Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly Nat. Struct. Mol. Biol., 19 (2012),pp. 145-151
|
[84] |
Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation Nat. Genet., 30 (2002),pp. 363-364
|
[85] |
Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genetics, 11 (2010),pp. 204-220
|
[86] |
Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
|
[87] |
Lee, Y.S., Nakahara, K., Pham, J.W. et al. Cell, 117 (2004),pp. 69-81
|
[88] |
Leuschner, P.J.F., Ameres, S.L., Kueng, S. et al. Cleavage of the siRNA passenger strand during RISC assembly in human cells EMBO Rep., 7 (2006),pp. 314-320
|
[89] |
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W. et al. Prediction of mammalian microRNA targets Cell, 115 (2003),pp. 787-798
|
[90] |
Lin, H., Spradling, A.C. Development, 124 (1997),pp. 2463-2476
|
[91] |
Liu, J., Carmell, M.A., Rivas, F.V. et al. Argonaute2 is the catalytic engine of mammalian RNAi Science, 305 (2004),pp. 1437-1441
|
[92] |
Liu, Q., Rand, T.A., Kalidas, S. et al. Science, 301 (2003),pp. 1921-1925
|
[93] |
Liu, Y., Ye, X., Jiang, F. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation Science, 325 (2009),pp. 750-753
|
[94] |
MacRae, I.J., Ma, E., Zhou, M. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 512-517
|
[95] |
Mallory, A., Vaucheret, H. Form, function, and regulation of ARGONAUTE proteins Plant Cell, 22 (2010),pp. 3879-3889
|
[96] |
Martin, F., Kohler, A., Murat, C. et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis Nature, 464 (2010),pp. 1033-1038
|
[97] |
Martin, R., Smibert, P., Yalcin, A. et al. Mol. Cell. Biol., 29 (2009),pp. 861-870
|
[98] |
Martinez, N.J., Gregory, R.I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance RNA, 19 (2013),pp. 605-612
|
[99] |
Mathys, H., Basquin, J., Ozgur, S. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression Mol. Cell, 54 (2014),pp. 751-765
|
[100] |
Mazumder, A., Bose, M., Chakraborty, A. et al. A transient reversal of miRNA-mediated repression controls macrophage activation EMBO Rep., 14 (2013),pp. 1008-1016
|
[101] |
Meister, G., Landthaler, M., Patkaniowska, A. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs Mol. Cell, 15 (2004),pp. 185-197
|
[102] |
Merchant, S.S., Prochnik, S.E., Vallon, O. et al. The chlamydomonas genome reveals the evolution of key animal and plant functions Science, 318 (2007),pp. 245-250
|
[103] |
Michalik, K.M., Bottcher, R., Forstemann, K. Nucleic Acids Res., 40 (2012),pp. 9596-9603
|
[104] |
Mishima, Y., Fukao, A., Kishimoto, T. et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 1104-1109
|
[105] |
Miyoshi, K., Tsukumo, H., Nagami, T. et al. Genes Dev., 19 (2005),pp. 2837-2848
|
[106] |
Morel, J.B., Godon, C., Mourrain, P. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance Plant Cell, 14 (2002),pp. 629-639
|
[107] |
Moshkovich, N., Nisha, P., Boyle, P.J. et al. RNAi-independent role for argonaute2 in CTCF/CP190 chromatin insulator function Genes Dev., 25 (2011),pp. 1686-1701
|
[108] |
Nakahara, K., Kim, K., Sciulli, C. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 12023-12028
|
[109] |
Nishi, K., Nishi, A., Nagasawa, T. et al. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus RNA, 19 (2013),pp. 17-35
|
[110] |
Nishihara, T., Zekri, L., Braun, J.E. et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation Nucleic Acids Res., 41 (2013),pp. 8692-8705
|
[111] |
Noland, C.L., Ma, E., Doudna, J.A. siRNA repositioning for guide strand selection by human dicer complexes Mol. Cell, 43 (2011),pp. 110-121
|
[112] |
Nonomura, K., Morohoshi, A., Nakano, M. et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice Plant Cell, 19 (2007),pp. 2583-2594
|
[113] |
Ohrt, T., Staroske, W., Mütze, J. et al. Fluorescence cross-correlation spectroscopy reveals mechanistic insights into the effect of 2′-O-methyl modified siRNAs in living cells Biophys. J., 100 (2011),pp. 2981-2990
|
[114] |
Okamura, K., Hagen, J.W., Duan, H. et al. Cell, 130 (2007),pp. 89-100
|
[115] |
Okamura, K., Ishizuka, A., Siomi, H. et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways Genes Dev., 18 (2004),pp. 1655-1666
|
[116] |
Okamura, K., Lai, E.C. Endogenous small interfering RNAs in animals Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 673-678
|
[117] |
Okamura, K., Liu, N., Lai, E.C. Mol. Cell, 36 (2009),pp. 431-444
|
[118] |
Pare, J.M., Tahbaz, N., López-Orozco, J. et al. Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies Mol. Biol. Cell, 20 (2009),pp. 3273-3284
|
[119] |
Pfaff, J., Hennig, J., Herzog, F. et al. Structural features of Argonaute-GW182 protein interactions Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E3770-E3779
|
[120] |
Piao, X., Zhang, X., Wu, L. et al. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells Mol. Cell. Biol., 30 (2010),pp. 1486-1494
|
[121] |
Qi, H.H., Ongusaha, P.P., Myllyharju, J. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability Nature, 455 (2008),pp. 421-424
|
[122] |
Rand, T.A., Petersen, S., Du, F. et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation Cell, 123 (2005),pp. 621-629
|
[123] |
Reimão-Pinto, M.M., Ignatova, V., Burkard, T.R. et al. Mol. Cell, 59 (2015),pp. 203-216
|
[124] |
Rhoades, M.W., Reinhart, B.J., Lim, L.P. et al. Prediction of plant microRNA targets Cell, 110 (2002),pp. 513-520
|
[125] |
Rissland, O.S., Lai, E.C. RNA silencing in Monterey Development, 138 (2011),pp. 3093-3102
|
[126] |
Robb, G.B., Rana, T.M. RNA helicase A interacts with RISC in human cells and functions in RISC loading Mol. Cell, 26 (2007),pp. 523-537
|
[127] |
Rouya, C., Siddiqui, N., Morita, M. et al. RNA, 20 (2014),pp. 1398-1409
|
[128] |
Ruby, J.G., Jan, C.H., Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing Nature, 448 (2007),pp. 83-86
|
[129] |
Salomon, W.E., Jolly, S.M., Moore, M.J. et al. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides Cell, 162 (2015),pp. 84-95
|
[130] |
Schmid, M., Davison, T.S., Henz, S.R. et al. Nat. Genet., 37 (2005),pp. 501-506
|
[131] |
Scholthof, H.B., Alvarado, V.Y., Vega-Arreguin, J.C. et al. Plant Physiol., 156 (2011),pp. 1548-1555
|
[132] |
Schürmann, N., Trabuco, L.G., Bender, C. et al. Molecular dissection of human Argonaute proteins by DNA shuffling Nat. Struct. Mol. Biol., 20 (2013),pp. 818-826
|
[133] |
Schwarz, D.S., Hutvágner, G., Du, T. et al. Asymmetry in the assembly of the RNAi enzyme complex Cell, 115 (2003),pp. 199-208
|
[134] |
Seitz, H., Tushir, J.S., Zamore, P.D. Silence, 2 (2011),p. 4
|
[135] |
Selbach, M., Selbach, M., Schwanhäusser, B. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
|
[136] |
Sempere, L.F., Freemantle, S., Pitha-Rowe, I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation Genome Biol., 5 (2004)
|
[137] |
Shen, J., Xia, W., Khotskaya, Y.B. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 Nature, 497 (2013),pp. 383-387
|
[138] |
Singh, R.K., Gase, K., Baldwin, I.T. et al. Molecular evolution and diversification of the Argonaute family of proteins in plants BMC Plant Biol., 15 (2015),p. 23
|
[139] |
Smibert, P., Yang, J.-S.S., Azzam, G. et al. Homeostatic control of Argonaute stability by microRNA availability Nat. Struct. Mol. Biol., 20 (2013),pp. 789-795
|
[140] |
Song, J.-J.J., Smith, S.K., Hannon, G.J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity Science, 305 (2004),pp. 1434-1437
|
[141] |
Su, H., Meng, S., Lu, Y. et al. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing Mol. Cell, 43 (2011),pp. 97-109
|
[142] |
Subtelny, A.O., Eichhorn, S.W., Chen, G.R. et al. Poly(A)-tail profiling reveals an embryonic switch in translational control Nature, 508 (2014),pp. 66-71
|
[143] |
Taliaferro, J.M., Aspden, J.L., Bradley, T. et al. Genes Dev., 27 (2013),pp. 378-389
|
[144] |
Tan, G.S., Garchow, B.G., Liu, X. et al. Expanded RNA-binding activities of mammalian Argonaute 2 Nucleic Acids Res., 37 (2009),pp. 7533-7545
|
[145] |
Tavsanli, B.C., Ostrin, E.J., Burgess, H.K. et al. Dev. Biol., 272 (2004),pp. 231-247
|
[146] |
Teves, S.S., Henikoff, S. The heat shock response: a case study of chromatin dynamics in gene regulation Biochem. Cell Biol., 91 (2013),pp. 42-48
|
[147] |
Thomsen, S., Azzam, G., Kaschula, R. et al. Developmental RNA processing of 3′UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs Development, 137 (2010),pp. 2951-2960
|
[148] |
Tolia, N.H., Joshua-Tor, L. Slicer and the argonautes Nat. Chem. Biol., 3 (2007),pp. 36-43
|
[149] |
Tomari, Y., Du, T., Zamore, P.D. Cell, 130 (2007),pp. 299-308
|
[150] |
Tomari, Y., Matranga, C., Haley, B. et al. A protein sensor for siRNA asymmetry Science, 306 (2004),pp. 1377-1380
|
[151] |
van Rooij, E., Sutherland, L.B., Qi, X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science, 316 (2007),pp. 575-579
|
[152] |
Vaucheret, H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations Genes Dev., 20 (2006),pp. 759-771
|
[153] |
Vaucheret, H. Plant ARGONAUTES Trends Plant Sci., 13 (2008),pp. 350-358
|
[154] |
Vaucheret, H., Vazquez, F., Crété, P. et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development Genes Dev., 18 (2004),pp. 1187-1197
|
[155] |
Wakiyama, M., Takimoto, K., Ohara, O. et al. Genes Dev., 21 (2007),pp. 1857-1862
|
[156] |
Wei, W., Ba, Z., Gao, M. et al. A role for small RNAs in DNA double-strand break repair Cell, 149 (2012),pp. 101-112
|
[157] |
Weinmann, L., Hock, J., Ivacevic, T. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs Cell, 136 (2009),pp. 496-507
|
[158] |
Wightman, B., Ha, I., Ruvkun, G. Cell, 75 (1993),pp. 855-862
|
[159] |
Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4034-4039
|
[160] |
Wu, L., Fan, J., Belasco, J.G. Importance of translation and nonnucleolytic Ago proteins for on-target RNA interference Curr. Biol., 18 (2008),pp. 1327-1332
|
[161] |
Wu, S., Huang, S., Ding, J. et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region Oncogene, 29 (2010),pp. 2302-2308
|
[162] |
Yigit, E., Batista, P.J., Bei, Y. et al. Cell, 127 (2006),pp. 747-757
|
[163] |
Yoda, M., Kawamata, T., Paroo, Z. et al. ATP-dependent human RISC assembly pathways Nat. Struct. Mol. Biol., 17 (2010),pp. 17-23
|
[164] |
Zeng, Y., Sankala, H., Zhang, X. et al. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies Biochem. J., 413 (2008),pp. 429-436
|
[165] |
Zhang, H., Xia, R., Meyers, B.C. et al. Evolution, functions, and mysteries of plant ARGONAUTE proteins Curr. Opin. Plant Biol., 27 (2015),pp. 84-90
|
[166] |
Zhang, P., Zhang, H. EMBO Rep., 14 (2013),pp. 568-576
|
[167] |
Zheng, X., Zhu, J., Kapoor, A. et al. EMBO J., 26 (2007),pp. 1691-1701
|
[168] |
Zilberman, D., Cao, X., Jacobsen, S.E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation Science, 299 (2003),pp. 716-719
|