5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 5
May  2016
Turn off MathJax
Article Contents

Genome Editing with CRISPR-Cas9: Can It Get Any Better?

doi: 10.1016/j.jgg.2016.04.008
More Information
  • Corresponding author: E-mail address: jean-paul.concordet@mnhn.fr (Jean-Paul Concordet)
  • Received Date: 2016-02-12
  • Accepted Date: 2016-04-23
  • Rev Recd Date: 2016-04-13
  • Available Online: 2016-04-24
  • Publish Date: 2016-05-20
  • The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage.
  • loading
  • [1]
    Aida, T., Chiyo, K., Usami, T. et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice Genome Biol., 16 (2015),p. 87
    [2]
    Anders, C., Niewoehner, O., Duerst, A. et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease Nature, 513 (2014),pp. 569-573
    [3]
    Bae, S., Kweon, J., Kim, H.S. et al. Microhomology-based choice of Cas9 nuclease target sites Nat. Methods, 11 (2014),pp. 705-706
    [4]
    Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution Science, 344 (2014),pp. 707-708
    [5]
    Bhattacharya, D., Marfo, C.A., Li, D. et al. Dev. Biol., 408 (2015),pp. 196-204
    [6]
    Brinkman, E.K., Chen, T., Amendola, M. et al. Easy quantitative assessment of genome editing by sequence trace decomposition Nucleic Acids Res., 42 (2014),p. e168
    [7]
    Chari, R., Mali, P., Moosburner, M. et al. Nat. Methods, 12 (2015),pp. 823-826
    [8]
    Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
    [9]
    Chen, X., Xu, F., Zhu, C. et al. Sci. Rep., 4 (2014),p. 7581
    [10]
    Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
    [11]
    Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
    [12]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [13]
    Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
    [14]
    Dahlman, J.E., Abudayyeh, O.O., Joung, J. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease Nat. Biotechnol., 33 (2015),pp. 1159-1161
    [15]
    Dang, Y., Jia, G., Choi, J. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency Genome Biol., 16 (2015),p. 280
    [16]
    Doench, J.G., Fusi, N., Sullender, M. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 Nat. Biotechnol., 34 (2016),pp. 184-191
    [17]
    Doench, J.G., Hartenian, E., Graham, D.B. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation Nat. Biotechnol., 32 (2014),pp. 1262-1267
    [18]
    Elliott, B., Richardson, C., Winderbaum, J. et al. Gene conversion tracts from double-strand break repair in mammalian cells Mol. Cell. Biol., 18 (1998),pp. 93-101
    [19]
    Essletzbichler, P., Konopka, T., Santoro, F. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line Genome Res., 24 (2014),pp. 2059-2065
    [20]
    Farboud, B., Meyer, B.J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design Genetics, 199 (2015),pp. 959-971
    [21]
    Findlay, G.M., Boyle, E.A., Hause, R.J. et al. Saturation editing of genomic regions by multiplex homology-directed repair Nature, 513 (2014),pp. 120-123
    [22]
    Frock, R.L., Hu, J., Meyers, R.M. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases Nat. Biotechnol., 33 (2015),pp. 179-186
    [23]
    Fusi, N., Smith, I., Doench, J. et al. bioRxiv (2015)
    [24]
    Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [25]
    Gantz, V.M., Jasinskiene, N., Tatarenkova, O. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E6736-E6743
    [26]
    Glemzaite, M., Balciunaite, E., Karvelis, T. et al. RNA Biol., 12 (2015),pp. 1-4
    [27]
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
    [28]
    Hart, T., Chandrashekhar, M., Aregger, M. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities Cell, 163 (2015),pp. 1515-1526
    [29]
    Heigwer, F., Kerr, G., Boutros, M. E-CRISP: fast CRISPR target site identification Nat. Methods, 11 (2014),pp. 122-123
    [30]
    Hinz, J.M., Laughery, M.F., Wyrick, J.J. Biochemistry, 54 (2015),pp. 7063-7066
    [31]
    Housden, B.E., Valvezan, A.J., Kelley, C. et al. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi Sci. Signal, 8 (2015),p. rs9
    [32]
    Hou, Z., Zhang, Y., Propson, N.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 15644-15649
    [33]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [34]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [35]
    Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [36]
    Iyer, V., Shen, B., Zhang, W. et al. Off-target mutations are rare in Cas9-modified mice Nat. Methods, 12 (2015),p. 479
    [37]
    Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases Trends Genet., 12 (1996),pp. 224-228
    [38]
    Jiang, F., Taylor, D.W., Chen, J.S. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage Science, 351 (2016),pp. 867-871
    [39]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [40]
    Jinek, M., Jiang, F., Taylor, D.W. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation Science, 343 (2014),p. 1247997
    [41]
    Karvelis, T., Gasiunas, G., Young, J. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements Genome Biol., 16 (2015),p. 253
    [42]
    Kim, D., Bae, S., Park, J. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat. Methods, 12 (2015),pp. 237-243
    [43]
    Kim, D., Kim, S., Kim, S. et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq Genome Res., 26 (2016),pp. 406-415
    [44]
    Kim, H., Um, E., Cho, S.-R. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations Nat. Methods, 8 (2011),pp. 941-943
    [45]
    Kim, S., Kim, D., Cho, S.W. et al. Genome Res., 24 (2014),pp. 1012-1019
    [46]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [47]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Nat. Biotechnol., 33 (2015),pp. 1293-1298
    [48]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities Nature, 523 (2015),pp. 481-485
    [49]
    Koller, B.H., Kim, H.S., Latour, A.M. et al. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 10730-10734
    [50]
    Kotani, H., Taimatsu, K., Ohga, R. et al. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish PLoS One, 10 (2015),p. e0128319
    [51]
    Larcher, T., Lafoux, A., Tesson, L. et al. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy PLoS One, 9 (2014),p. e110371
    [52]
    Liang, X., Potter, J., Kumar, S. et al. J. Biotechnol., 208 (2015),pp. 44-53
    [53]
    Lin, Y., Cradick, T.J., Brown, M.T. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences Nucleic Acids Res., 42 (2014),pp. 7473-7485
    [54]
    Liu, X., Homma, A., Sayadi, J. et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system Sci. Rep., 6 (2016),p. 19675
    [55]
    Malina, A., Cameron, C.J.F., Robert, F. et al. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing Nat. Commun., 6 (2015),p. 10124
    [56]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [57]
    Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
    [58]
    Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
    [59]
    Ménoret, S., De Cian, A., Tesson, L. et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins Sci. Rep., 5 (2015),p. 14410
    [60]
    Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.-D. et al. Nat. Methods, 12 (2015),pp. 982-988
    [61]
    Müller, M., Lee, C.M., Gasiunas, G. et al. Mol. Ther., 24 (2015),pp. 636-644
    [62]
    Müller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis Mech. Dev., 82 (1999),pp. 3-21
    [63]
    Nishimasu, H., Ran, F.A., Hsu, P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156 (2014),pp. 935-949
    [64]
    Paix, A., Folkmann, A., Rasoloson, D. et al. Genetics, 201 (2015),pp. 47-54
    [65]
    Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [66]
    Rahdar, M., McMahon, M.A., Prakash, T.P. et al. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E7110-E7117
    [67]
    Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
    [68]
    Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
    [69]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [70]
    Shi, J., Wang, E., Milazzo, J.P. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains Nat. Biotechnol., 33 (2015),pp. 661-667
    [71]
    Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems Mol. Cell, 60 (2015),pp. 385-397
    [72]
    Skarnes, W.C., Rosen, B., West, A.P. et al. A conditional knockout resource for the genome-wide study of mouse gene function Nature, 474 (2011),pp. 337-342
    [73]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [74]
    Song, J., Yang, D., Xu, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency Nat. Commun., 7 (2016),p. 10548
    [75]
    Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool PLoS One, 10 (2015),p. e0124633
    [76]
    Sunagawa, G.A., Sumiyama, K., Ukai-Tadenuma, M. et al. Cell Rep., 14 (2016),pp. 662-677
    [77]
    Tabebordbar, M., Zhu, K., Cheng, J.K.W. et al. Science, 351 (2016),pp. 407-411
    [78]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [79]
    Uddin, B., Chen, N.-P., Panic, M. et al. Genome editing through large insertion leads to the skipping of targeted exon BMC Genomics, 16 (2015),p. 1082
    [80]
    Varshney, G.K., Pei, W., LaFave, M.C. et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 Genome Res., 25 (2015),pp. 1030-1042
    [81]
    Vouillot, L., Thélie, A., Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases G3 (Bethesda), 5 (2015),pp. 407-415
    [82]
    Wang, T., Birsoy, K., Hughes, N.W. et al. Identification and characterization of essential genes in the human genome Science, 350 (2015),pp. 1096-1101
    [83]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [84]
    Wang, X., Wang, Y., Wu, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors Nat. Biotechnol., 33 (2015),pp. 175-178
    [85]
    Wong, N., Liu, W., Wang, X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system Genome Biol., 16 (2015),p. 218
    [86]
    Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
    [87]
    Xu, H., Xiao, T., Chen, C.-H. et al. Sequence determinants of improved CRISPR sgRNA design Genome Res., 25 (2015),pp. 1147-1157
    [88]
    Yang, L., Guell, M., Byrne, S. et al. Optimization of scarless human stem cell genome editing Nucleic Acids Res., 41 (2013),pp. 9049-9061
    [89]
    Yang, Z., Steentoft, C., Hauge, C. et al. Fast and sensitive detection of indels induced by precise gene targeting Nucleic Acids Res., 43 (2015),p. e59
    [90]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return