5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 5
May  2016

Genome Editing with CRISPR-Cas9: Can It Get Any Better?

doi: 10.1016/j.jgg.2016.04.008
More Information
  • Corresponding author: E-mail address: jean-paul.concordet@mnhn.fr (Jean-Paul Concordet)
  • Received Date: 2016-02-12
  • Accepted Date: 2016-04-23
  • Rev Recd Date: 2016-04-13
  • Available Online: 2016-04-24
  • Publish Date: 2016-05-20
  • The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage.
  • [1]
    Aida, T., Chiyo, K., Usami, T. et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice Genome Biol., 16 (2015),p. 87
    [2]
    Anders, C., Niewoehner, O., Duerst, A. et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease Nature, 513 (2014),pp. 569-573
    [3]
    Bae, S., Kweon, J., Kim, H.S. et al. Microhomology-based choice of Cas9 nuclease target sites Nat. Methods, 11 (2014),pp. 705-706
    [4]
    Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution Science, 344 (2014),pp. 707-708
    [5]
    Bhattacharya, D., Marfo, C.A., Li, D. et al. Dev. Biol., 408 (2015),pp. 196-204
    [6]
    Brinkman, E.K., Chen, T., Amendola, M. et al. Easy quantitative assessment of genome editing by sequence trace decomposition Nucleic Acids Res., 42 (2014),p. e168
    [7]
    Chari, R., Mali, P., Moosburner, M. et al. Nat. Methods, 12 (2015),pp. 823-826
    [8]
    Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
    [9]
    Chen, X., Xu, F., Zhu, C. et al. Sci. Rep., 4 (2014),p. 7581
    [10]
    Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
    [11]
    Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
    [12]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [13]
    Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
    [14]
    Dahlman, J.E., Abudayyeh, O.O., Joung, J. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease Nat. Biotechnol., 33 (2015),pp. 1159-1161
    [15]
    Dang, Y., Jia, G., Choi, J. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency Genome Biol., 16 (2015),p. 280
    [16]
    Doench, J.G., Fusi, N., Sullender, M. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 Nat. Biotechnol., 34 (2016),pp. 184-191
    [17]
    Doench, J.G., Hartenian, E., Graham, D.B. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation Nat. Biotechnol., 32 (2014),pp. 1262-1267
    [18]
    Elliott, B., Richardson, C., Winderbaum, J. et al. Gene conversion tracts from double-strand break repair in mammalian cells Mol. Cell. Biol., 18 (1998),pp. 93-101
    [19]
    Essletzbichler, P., Konopka, T., Santoro, F. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line Genome Res., 24 (2014),pp. 2059-2065
    [20]
    Farboud, B., Meyer, B.J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design Genetics, 199 (2015),pp. 959-971
    [21]
    Findlay, G.M., Boyle, E.A., Hause, R.J. et al. Saturation editing of genomic regions by multiplex homology-directed repair Nature, 513 (2014),pp. 120-123
    [22]
    Frock, R.L., Hu, J., Meyers, R.M. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases Nat. Biotechnol., 33 (2015),pp. 179-186
    [23]
    Fusi, N., Smith, I., Doench, J. et al. bioRxiv (2015)
    [24]
    Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [25]
    Gantz, V.M., Jasinskiene, N., Tatarenkova, O. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E6736-E6743
    [26]
    Glemzaite, M., Balciunaite, E., Karvelis, T. et al. RNA Biol., 12 (2015),pp. 1-4
    [27]
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
    [28]
    Hart, T., Chandrashekhar, M., Aregger, M. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities Cell, 163 (2015),pp. 1515-1526
    [29]
    Heigwer, F., Kerr, G., Boutros, M. E-CRISP: fast CRISPR target site identification Nat. Methods, 11 (2014),pp. 122-123
    [30]
    Hinz, J.M., Laughery, M.F., Wyrick, J.J. Biochemistry, 54 (2015),pp. 7063-7066
    [31]
    Housden, B.E., Valvezan, A.J., Kelley, C. et al. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi Sci. Signal, 8 (2015),p. rs9
    [32]
    Hou, Z., Zhang, Y., Propson, N.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 15644-15649
    [33]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [34]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [35]
    Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [36]
    Iyer, V., Shen, B., Zhang, W. et al. Off-target mutations are rare in Cas9-modified mice Nat. Methods, 12 (2015),p. 479
    [37]
    Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases Trends Genet., 12 (1996),pp. 224-228
    [38]
    Jiang, F., Taylor, D.W., Chen, J.S. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage Science, 351 (2016),pp. 867-871
    [39]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [40]
    Jinek, M., Jiang, F., Taylor, D.W. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation Science, 343 (2014),p. 1247997
    [41]
    Karvelis, T., Gasiunas, G., Young, J. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements Genome Biol., 16 (2015),p. 253
    [42]
    Kim, D., Bae, S., Park, J. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat. Methods, 12 (2015),pp. 237-243
    [43]
    Kim, D., Kim, S., Kim, S. et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq Genome Res., 26 (2016),pp. 406-415
    [44]
    Kim, H., Um, E., Cho, S.-R. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations Nat. Methods, 8 (2011),pp. 941-943
    [45]
    Kim, S., Kim, D., Cho, S.W. et al. Genome Res., 24 (2014),pp. 1012-1019
    [46]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [47]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Nat. Biotechnol., 33 (2015),pp. 1293-1298
    [48]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities Nature, 523 (2015),pp. 481-485
    [49]
    Koller, B.H., Kim, H.S., Latour, A.M. et al. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 10730-10734
    [50]
    Kotani, H., Taimatsu, K., Ohga, R. et al. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish PLoS One, 10 (2015),p. e0128319
    [51]
    Larcher, T., Lafoux, A., Tesson, L. et al. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy PLoS One, 9 (2014),p. e110371
    [52]
    Liang, X., Potter, J., Kumar, S. et al. J. Biotechnol., 208 (2015),pp. 44-53
    [53]
    Lin, Y., Cradick, T.J., Brown, M.T. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences Nucleic Acids Res., 42 (2014),pp. 7473-7485
    [54]
    Liu, X., Homma, A., Sayadi, J. et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system Sci. Rep., 6 (2016),p. 19675
    [55]
    Malina, A., Cameron, C.J.F., Robert, F. et al. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing Nat. Commun., 6 (2015),p. 10124
    [56]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [57]
    Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
    [58]
    Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
    [59]
    Ménoret, S., De Cian, A., Tesson, L. et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins Sci. Rep., 5 (2015),p. 14410
    [60]
    Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.-D. et al. Nat. Methods, 12 (2015),pp. 982-988
    [61]
    Müller, M., Lee, C.M., Gasiunas, G. et al. Mol. Ther., 24 (2015),pp. 636-644
    [62]
    Müller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis Mech. Dev., 82 (1999),pp. 3-21
    [63]
    Nishimasu, H., Ran, F.A., Hsu, P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156 (2014),pp. 935-949
    [64]
    Paix, A., Folkmann, A., Rasoloson, D. et al. Genetics, 201 (2015),pp. 47-54
    [65]
    Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [66]
    Rahdar, M., McMahon, M.A., Prakash, T.P. et al. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E7110-E7117
    [67]
    Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
    [68]
    Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
    [69]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [70]
    Shi, J., Wang, E., Milazzo, J.P. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains Nat. Biotechnol., 33 (2015),pp. 661-667
    [71]
    Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems Mol. Cell, 60 (2015),pp. 385-397
    [72]
    Skarnes, W.C., Rosen, B., West, A.P. et al. A conditional knockout resource for the genome-wide study of mouse gene function Nature, 474 (2011),pp. 337-342
    [73]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [74]
    Song, J., Yang, D., Xu, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency Nat. Commun., 7 (2016),p. 10548
    [75]
    Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool PLoS One, 10 (2015),p. e0124633
    [76]
    Sunagawa, G.A., Sumiyama, K., Ukai-Tadenuma, M. et al. Cell Rep., 14 (2016),pp. 662-677
    [77]
    Tabebordbar, M., Zhu, K., Cheng, J.K.W. et al. Science, 351 (2016),pp. 407-411
    [78]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [79]
    Uddin, B., Chen, N.-P., Panic, M. et al. Genome editing through large insertion leads to the skipping of targeted exon BMC Genomics, 16 (2015),p. 1082
    [80]
    Varshney, G.K., Pei, W., LaFave, M.C. et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 Genome Res., 25 (2015),pp. 1030-1042
    [81]
    Vouillot, L., Thélie, A., Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases G3 (Bethesda), 5 (2015),pp. 407-415
    [82]
    Wang, T., Birsoy, K., Hughes, N.W. et al. Identification and characterization of essential genes in the human genome Science, 350 (2015),pp. 1096-1101
    [83]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [84]
    Wang, X., Wang, Y., Wu, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors Nat. Biotechnol., 33 (2015),pp. 175-178
    [85]
    Wong, N., Liu, W., Wang, X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system Genome Biol., 16 (2015),p. 218
    [86]
    Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
    [87]
    Xu, H., Xiao, T., Chen, C.-H. et al. Sequence determinants of improved CRISPR sgRNA design Genome Res., 25 (2015),pp. 1147-1157
    [88]
    Yang, L., Guell, M., Byrne, S. et al. Optimization of scarless human stem cell genome editing Nucleic Acids Res., 41 (2013),pp. 9049-9061
    [89]
    Yang, Z., Steentoft, C., Hauge, C. et al. Fast and sensitive detection of indels induced by precise gene targeting Nucleic Acids Res., 43 (2015),p. e59
    [90]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
  • Relative Articles

    [1]Zhen Liang, Yuqing Wu, Yingjie Guo, Sha Wei. Addition of the T5 exonuclease increases the prime editing efficiency in plants[J]. Journal of Genetics and Genomics, 2023, 50(8): 582-588. doi: 10.1016/j.jgg.2023.03.008
    [2]Lei Huang, Dan Wang, Haodong Chen, Jinnan Hu, Xuechen Dai, Chuan Liu, Anduo Li, Xuechun Shen, Chen Qi, Haixi Sun, Dengwei Zhang, Tong Chen, Yuan Jiang. CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events[J]. Journal of Genetics and Genomics, 2023, 50(8): 563-572. doi: 10.1016/j.jgg.2023.03.010
    [3]Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.007
    [4]Jinfu Zhang, Emmanuel M. Khazalwa, Hussein M. Abkallo, Yuan Zhou, Xiongwei Nie, Jinxue Ruan, Changzhi Zhao, Jieru Wang, Jing Xu, Xinyun Li, Shuhong Zhao, Erwei Zuo, Lucilla Steinaa, Shengsong Xie. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research[J]. Journal of Genetics and Genomics, 2021, 48(5): 347-360. doi: 10.1016/j.jgg.2021.03.015
    [5]Jing Wu, Hao Yin. Engineering guide RNA to reduce the off-target effects of CRISPR[J]. Journal of Genetics and Genomics, 2019, 46(11): 523-529. doi: 10.1016/j.jgg.2019.11.003
    [6]Yubing He, Tao Zhang, Ning Yang, Meilian Xu, Lang Yan, Lihao Wang, Rongchen Wang, Yunde Zhao. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing[J]. Journal of Genetics and Genomics, 2017, 44(9): 469-472. doi: 10.1016/j.jgg.2017.08.003
    [7]Yuanyuan Liu, Sanyuan Ma, Jiasong Chang, Tong Zhang, Xiaogang Wang, Run Shi, Jianduo Zhang, Wei Lu, Yue Liu, Qingyou Xia. Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori[J]. Journal of Genetics and Genomics, 2017, 44(9): 451-459. doi: 10.1016/j.jgg.2017.09.003
    [8]Yufeng Hua, Chun Wang, Jian Huang, Kejian Wang. A simple and efficient method for CRISPR/Cas9-induced mutant screening[J]. Journal of Genetics and Genomics, 2017, 44(4): 207-213. doi: 10.1016/j.jgg.2017.03.005
    [9]Feiyue Cheng, Luyao Gong, Dahe Zhao, Haibo Yang, Jian Zhou, Ming Li, Hua Xiang. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. Journal of Genetics and Genomics, 2017, 44(11): 541-548. doi: 10.1016/j.jgg.2017.09.010
    [10]Guanghai Xiang, Xingying Zhang, Chenrui An, Chen Cheng, Haoyi Wang. Temperature effect on CRISPR-Cas9 mediated genome editing[J]. Journal of Genetics and Genomics, 2017, 44(4): 199-205. doi: 10.1016/j.jgg.2017.03.004
    [11]Renjie Jiao, Caixia Gao. The CRISPR/Cas9 Genome Editing Revolution[J]. Journal of Genetics and Genomics, 2016, 43(5): 227-228. doi: 10.1016/j.jgg.2016.05.004
    [12]Ting Li, Bo Liu, Chih Ying Chen, Bing Yang. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice[J]. Journal of Genetics and Genomics, 2016, 43(5): 297-305. doi: 10.1016/j.jgg.2016.03.005
    [13]Vanessa Chenouard, Lucas Brusselle, Jean-Marie Heslan, Séverine Remy, Séverine Ménoret, Claire Usal, Laure-Hélène Ouisse, Tuan Huy NGuyen, Ignacio Anegon, Laurent Tesson. A Rapid and Cost-Effective Method for Genotyping Genome-Edited Animals: A Heteroduplex Mobility Assay Using Microfluidic Capillary Electrophoresis[J]. Journal of Genetics and Genomics, 2016, 43(5): 341-348. doi: 10.1016/j.jgg.2016.04.005
    [14]Dandan Zhang, Zhenxiang Li, Jian-Feng Li. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology[J]. Journal of Genetics and Genomics, 2016, 43(5): 251-262. doi: 10.1016/j.jgg.2016.03.001
    [15]Yue Mei, Yan Wang, Huiqian Chen, Zhong Sheng Sun, Xing-Da Ju. Recent Progress in CRISPR/Cas9 Technology[J]. Journal of Genetics and Genomics, 2016, 43(2): 63-75. doi: 10.1016/j.jgg.2016.01.001
    [16]Chun Wang, Lan Shen, Yaping Fu, Changjie Yan, Kejian Wang. A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice[J]. Journal of Genetics and Genomics, 2015, 42(12): 703-706. doi: 10.1016/j.jgg.2015.09.011
    [17]Jiang Xu, Xingjie Ren, Jin Sun, Xia Wang, Huan-Huan Qiao, Bo-Wen Xu, Lu-Ping Liu, Jian-Quan Ni. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila[J]. Journal of Genetics and Genomics, 2015, 42(4): 141-149. doi: 10.1016/j.jgg.2015.02.007
    [18]Suhong Xu. The Application of CRISPR-Cas9 Genome Editing in Caenorhabditis elegans[J]. Journal of Genetics and Genomics, 2015, 42(8): 413-421. doi: 10.1016/j.jgg.2015.06.005
    [19]Andrew R. Bassett, Ji-Long Liu. CRISPR/Cas9 and Genome Editing in Drosophila[J]. Journal of Genetics and Genomics, 2014, 41(1): 7-19. doi: 10.1016/j.jgg.2013.12.004
    [20]Chuanxian Wei, Jiyong Liu, Zhongsheng Yu, Bo Zhang, Guanjun Gao, Renjie Jiao. TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications[J]. Journal of Genetics and Genomics, 2013, 40(6): 281-289. doi: 10.1016/j.jgg.2013.03.013
  • Cited by

    Periodical cited type(55)

    1. Li, Q., Yu, H., Li, Q. Dual sgRNA-directed tyrosinases knockout using CRISPR/Cas9 technology in Pacific oyster (Crassostrea gigas) reveals their roles in early shell calcification. Gene, 2024. doi:10.1016/j.gene.2024.148748
    2. Reyhani-Ardabili, M., Ghafouri-Fard, S. CRISPR/Cas9 technology in the modeling of and treatment of mucopolysaccharidosis. Biochemistry and Biophysics Reports, 2024. doi:10.1016/j.bbrep.2024.101771
    3. Nakahara, T., Tabata, H., Kato, Y. et al. Construction and Stability of All-in-One Adenovirus Vectors Simultaneously Expressing Four and Eight Multiplex Guide RNAs and Cas9 Nickase. International Journal of Molecular Sciences, 2024, 25(16): 8783. doi:10.3390/ijms25168783
    4. Wang, J., Liu, F., Long, J. et al. The application of CRISPR-Cas system in Staphylococcus aureus infection. Heliyon, 2024, 10(14): e34383. doi:10.1016/j.heliyon.2024.e34383
    5. Chai, R., Guo, J., Geng, Y. et al. The Influence of Homologous Arm Length on Homologous Recombination Gene Editing Efficiency Mediated by SSB/CRISPR-Cas9 in Escherichia coli. Microorganisms, 2024, 12(6): 1102. doi:10.3390/microorganisms12061102
    6. Yadav, A.K., Asokan, R., Yamamoto, A. et al. Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains. Insect Molecular Biology, 2024, 33(2): 91-100. doi:10.1111/imb.12879
    7. Arif, A., Haider, R.A., Munir, A. et al. Bioinformatics tools and databases in genome editing for plants. CRISPRized Horticulture Crops: Genome Modified Plants and Microbes in Food and Agriculture, 2024. doi:10.1016/B978-0-443-13229-2.00008-9
    8. Didara, Z., Reithofer, F., Zöttl, K. et al. Inhibition of adenovirus replication by CRISPR-Cas9-mediated targeting of the viral E1A gene. Molecular Therapy Nucleic Acids, 2023. doi:10.1016/j.omtn.2023.02.033
    9. Ablazov, A., Felemban, A., Braguy, J. et al. A Fast and Cost-Effective Genotyping Method for CRISPR-Cas9-Generated Mutant Rice Lines. Plants, 2023, 12(11): 2189. doi:10.3390/plants12112189
    10. Leal, A.F., Fnu, N., Benincore-Flórez, E. et al. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Molecular Genetics and Metabolism, 2023, 138(1): 106968. doi:10.1016/j.ymgme.2022.106968
    11. Anthon, C., Corsi, G.I., Gorodkin, J. CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design. Bioinformatics, 2022, 38(24): 5437-5439. doi:10.1093/bioinformatics/btac697
    12. Corsi, G.I., Qu, K., Alkan, F. et al. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Nature Communications, 2022, 13(1): 3006. doi:10.1038/s41467-022-30515-0
    13. Farhad, T., Neves, K., Arbuthnot, P. et al. Adenoviral Vectors: Potential as Anti-HBV Vaccines and Therapeutics. Genes, 2022, 13(11): 1941. doi:10.3390/genes13111941
    14. Ranjbar, S., Malcata, F.X. Challenges and prospects for sustainable microalga-based oil: A comprehensive review, with a focus on metabolic and genetic engineering. Fuel, 2022. doi:10.1016/j.fuel.2022.124567
    15. Li, W., Huang, C., Chen, J. The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Frontiers in Bioengineering and Biotechnology, 2022. doi:10.3389/fbioe.2022.890155
    16. Saw, P.E., Cui, G.-H., Xu, X. Nanoparticles-Mediated CRISPR/Cas Gene Editing Delivery System. ChemMedChem, 2022, 17(9): e202100777. doi:10.1002/cmdc.202100777
    17. Teng, T., Teng, C.S., Kaartinen, V. et al. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development (Cambridge), 2022, 149(10): dev200181. doi:10.1242/dev.200181
    18. Kato, Y., Tabata, H., Sato, K. et al. Adenovirus vectors expressing eight multiplex guide rnas of CRISPR/Cas9 efficiently disrupted diverse hepatitis B virus gene derived from heterogeneous patient. International Journal of Molecular Sciences, 2021, 22(19): 10570. doi:10.3390/ijms221910570
    19. Ahmed, T., Noman, M., Shahid, M. et al. Potential application of crispr/cas9 system to engineer abiotic stress tolerance in plants. Protein and Peptide Letters, 2021, 28(8): 861-877. doi:10.2174/0929866528666210218220138
    20. Huan, P., Cui, M., Wang, Q. et al. CRISPR/Cas9-mediated mutagenesis reveals the roles of calaxin in gastropod larval cilia. Gene, 2021. doi:10.1016/j.gene.2021.145640
    21. Kovalchuk, I.. Off-target effects in genome editing. Genome Stability: From Virus to Human Application, 2021. doi:10.1016/B978-0-323-85679-9.00038-6
    22. Trivedi, D.. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. Progress in Molecular Biology and Translational Science, 2021. doi:10.1016/bs.pmbts.2021.01.006
    23. Johnson, M.L., Belin, J., Dorandeu, F. et al. Interdependent Factors of Demand-Side Rationale for Chemical, Biological, Radiological, and Nuclear Medical Countermeasures. Disaster Medicine and Public Health Preparedness, 2020, 14(6): 739-755. doi:10.1017/dmp.2019.109
    24. Wang, Q., Alariqi, M., Wang, F. et al. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnology Journal, 2020, 18(12): 2436-2443. doi:10.1111/pbi.13417
    25. Ng, I.-S., Keskin, B.B., Tan, S.-I. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnology Journal, 2020, 15(8): 1900228. doi:10.1002/biot.201900228
    26. Lin, B.-Y., Shih, C.-J., Hsieh, H.-Y. et al. Phytochrome coordinates with a hnRNP to regulate alternative splicing via an exonic splicing silencer. Plant Physiology, 2020, 182(1): 243-254. doi:10.1104/pp.19.00289
    27. Neal, S., De Jong, D.M., Seaver, E.C. CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1904): 20182491. doi:10.1098/rspb.2018.2491
    28. Fu, J., Yang, F., Xie, H. et al. Application and optimization of CRISPR/Cas system in bacteria | [细菌中CRISPR/Cas系统的应用和优化]. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2019, 35(3): 341-350. doi:10.13345/j.cjb.180429
    29. Haldeman, J.M., Conway, A.E., Arlotto, M.E. et al. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Research, 2019, 47(4): e23. doi:10.1093/nar/gky1286
    30. Pallarès Masmitjà, M., Knödlseder, N., Güell, M. CRISPR-gRNA Design. Methods in Molecular Biology, 2019. doi:10.1007/978-1-4939-9170-9_1
    31. Geny, S., Hosseini, E.S., Concordet, J.-P. et al. CHAPTER 17: CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, 2019-January(68): 400-433. doi:10.1039/9781788015714-00400
    32. Hultquist, J.F., Hiatt, J., Schumann, K. et al. CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nature Protocols, 2019, 14(1): 1-27. doi:10.1038/s41596-018-0069-7
    33. Nishihara, M., Higuchi, A., Watanabe, A. et al. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 2018, 18(1): 331. doi:10.1186/s12870-018-1539-3
    34. Alkan, F., Wenzel, A., Anthon, C. et al. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biology, 2018, 19(1): 177. doi:10.1186/s13059-018-1534-x
    35. Shen, J., Zhou, J., Chen, G.-Q. et al. Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPRCas9. Journal of Virology, 2018, 92(17): e00534-18. doi:10.1128/JVI.00534-18
    36. Eroglu, A.U., Mulligan, T.S., Zhang, L. et al. Multiplexed CRISPR/Cas9 targeting of genes implicated in retinal regeneration and degeneration. Frontiers in Cell and Developmental Biology, 2018, 6(AUG): 88. doi:10.3389/fcell.2018.00088
    37. Villa, J.K., Su, Y., Contreras, L.M. et al. Synthetic biology of small rnas and riboswitches. Microbiology Spectrum, 2018, 6(3): 1-18.
    38. Chen, Y., Zhang, Y. Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Advanced Science, 2018, 5(6): 1700964. doi:10.1002/advs.201700964
    39. Wang, G., Zhao, N., Berkhout, B. et al. CRISPR-Cas based antiviral strategies against HIV-1. Virus Research, 2018. doi:10.1016/j.virusres.2017.07.020
    40. Sparks, R.L.. Patent, Ownership and Licensing Issues of CRISPR-based Genome Editing: Impact on Universities and their Licensees. Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery, 2018. doi:10.1017/9781316756300.031
    41. Nishizawa-Yokoi, A., Yamaguchi, N. Gene expression and transcription factor binding tests using mutated-promoter reporter lines. Methods in Molecular Biology, 2018. doi:10.1007/978-1-4939-8657-6_17
    42. Fan, Y., Luo, R., Su, L.-Y. et al. Does the genetic feature of the Chinese tree shrew (Tupaia belangeri chinensis) support its potential as a viable model for Alzheimer's disease research?. Journal of Alzheimer's Disease, 2018, 61(3): 1015-1028. doi:10.3233/JAD-170594
    43. Füchtbauer, A.F., Preus, Sø., Börjesson, K. et al. Fluorescent RNA cytosine analogue-an internal probe for detailed structure and dynamics investigations. Scientific Reports, 2017, 7(1): 2393. doi:10.1038/s41598-017-02453-1
    44. Elkon, R., Agami, R. Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35(8): 732-746. doi:10.1038/nbt.3863
    45. Collonnier, C., Guyon-Debast, A., Maclot, F. et al. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods, 2017. doi:10.1016/j.ymeth.2017.04.024
    46. Gulbransen, B.D.. Emerging tools to study enteric neuromuscular function. American Journal of Physiology - Gastrointestinal and Liver Physiology, 2017, 312(5): G420-G426. doi:10.1152/ajpgi.00049.2017
    47. Wang, J.-H., Ling, D., Tu, L. et al. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?. Pharmacology and Therapeutics, 2017. doi:10.1016/j.pharmthera.2017.01.003
    48. Yang, F., Li, Y. The new generation tool for CRISPR genome editing: CRISPR/Cpf1. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2017, 33(3): 361-371. doi:10.13345/j.cjb.170029
    49. Assimes, T.L.. Coronary Artery Disease and Myocardial Infarction. Genomic and Precision Medicine: Primary Care: Third Edition, 2017. doi:10.1016/B978-0-12-800685-6.00008-4
    50. Yanik, M., Wende, W., Stieger, K. Genome Editing Tools and their Application in Experimental Ophthalmology | [Genome Editing Tools und ihr Einsatz in der experimentellen Augenheilkunde]. Klinische Monatsblatter fur Augenheilkunde, 2017, 234(3): 329-334. doi:10.1055/s-0042-119205
    51. Steinert, J., Schmidt, C., Puchta, H. Use of the Cas9 orthologs from Streptococcus thermophilus and Staphylococcus aureus for non-homologous end-joining mediated site-specific mutagenesis in Arabidopsis thaliana. Methods in Molecular Biology, 2017. doi:10.1007/978-1-4939-7286-9_27
    52. Ducos, A., Bed'Hom, B., Acloque, H. et al. Genome Editing: What impact for farm animal species? | [Modifications ciblées des génomes: Apports et impacts pour les espèces d'élevage]. Productions Animales, 2017, 30(1): 3-18.
    53. Yanik, M., Müller, B., Song, F. et al. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research, 2017. doi:10.1016/j.preteyeres.2016.09.001
    54. Momose, T., Concordet, J.-P. Diving into marine genomics with CRISPR/Cas9 systems. Marine Genomics, 2016. doi:10.1016/j.margen.2016.10.003
    55. Bortesi, L., Zhu, C., Zischewski, J. et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnology Journal, 2016, 14(12): 2203-2216. doi:10.1111/pbi.12634

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads (1) Cited by (56)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return