[1] |
Altaf, M., Utley, R.T., Lacoste, N. et al. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin Mol. Cell, 28 (2007),pp. 1002-1014
|
[2] |
Arneric, M., Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast EMBO Rep., 8 (2007),pp. 1080-1085
|
[3] |
Bianchi, A., Shore, D. Early replication of short telomeres in budding yeast Cell, 128 (2007),pp. 1051-1062
|
[4] |
Brand, A.H., Micklem, G., Nasmyth, K. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation Cell, 51 (1987),pp. 709-719
|
[5] |
Buchman, A.R., Kimmerly, W.J., Rine, J. et al. Mol. Cell. Biol., 8 (1988),pp. 210-225
|
[6] |
Buck, S.W., Shore, D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast Genes Dev., 9 (1995),pp. 370-384
|
[7] |
Davey, C.A., Sargent, D.F., Luger, K. et al. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution J. Mol. Biol., 319 (2002),pp. 1097-1113
|
[8] |
Diede, S.J., Gottschling, D.E. Cell, 99 (1999),pp. 723-733
|
[9] |
Evans, S.K., Sistrunk, M.L., Nugent, C.I. et al. Chromosoma, 107 (1998),pp. 352-358
|
[10] |
Feeser, E.A., Wolberger, C. Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants J. Mol. Biol., 380 (2008),pp. 520-531
|
[11] |
Ganapathi, M., Palumbo, M.J., Ansari, S.A. et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast Nucleic Acids Res., 39 (2010),pp. 2032-2044
|
[12] |
Gottschling, D.E., Aparicio, O.M., Billington, B.L. et al. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription Cell, 63 (1990),pp. 751-762
|
[13] |
Grewal, S.I., Moazed, D. Heterochromatin and epigenetic control of gene expression Science, 301 (2003),pp. 798-802
|
[14] |
Grunstein, M. Molecular model for telomeric heterochromatin in yeast Curr. Opin. Cell Biol., 9 (1997),pp. 383-387
|
[15] |
Hecht, A., Laroche, T., Strahl-Bolsinger, S. et al. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast Cell, 80 (1995),pp. 583-592
|
[16] |
Hecht, A., Strahl-Bolsinger, S., Grunstein, M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin Nature, 383 (1996),pp. 92-96
|
[17] |
Hector, R.E., Shtofman, R.L., Ray, A. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation Mol. Cell, 27 (2007),pp. 851-858
|
[18] |
Hoppe, G.J., Tanny, J.C., Rudner, A.D. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation Mol. Cell. Biol., 22 (2002),pp. 4167-4180
|
[19] |
Imai, S., Armstrong, C.M., Kaeberlein, M. et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase Nature, 403 (2000),pp. 795-800
|
[20] |
Johnson, L.M., Kayne, P.S., Kahn, E.S. et al. Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 6286-6290
|
[21] |
Katan-Khaykovich, Y., Struhl, K. Heterochromatin formation involves changes in histone modifications over multiple cell generations EMBO J., 24 (2005),pp. 2138-2149
|
[22] |
Kirchmaier, A.L., Rine, J. Mol. Cell. Biol., 26 (2006),pp. 852-862
|
[23] |
Kitada, T., Kuryan, B.G., Tran, N.N. et al. Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin Genes Dev., 26 (2012),pp. 2443-2455
|
[24] |
Konig, P., Giraldo, R., Chapman, L. et al. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA Cell, 85 (1996),pp. 125-136
|
[25] |
Kueng, S., Oppikofer, M., Gasser, S.M. SIR proteins and the assembly of silent chromatin in budding yeast Annu. Rev. Genet., 47 (2013),pp. 275-306
|
[26] |
Landry, J., Slama, J.T., Sternglanz, R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins Biochem. Biophys. Res. Commun., 278 (2000),pp. 685-690
|
[27] |
Landry, J., Sutton, A., Tafrov, S.T. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 5807-5811
|
[28] |
Lau, A., Blitzblau, H., Bell, S.P. Genes Dev., 16 (2002),pp. 2935-2945
|
[29] |
Levy, D.L., Blackburn, E.H. Mol. Cell. Biol., 24 (2004),pp. 10857-10867
|
[30] |
Lieb, J.D., Liu, X., Botstein, D. et al. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association Nat. Genet., 28 (2001),pp. 327-334
|
[31] |
Liou, G.G., Tanny, J.C., Kruger, R.G. et al. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation Cell, 121 (2005),pp. 515-527
|
[32] |
Loney, E.R., Inglis, P.W., Sharp, S. et al. Epigenetics Chromatin, 2 (2009),p. 18
|
[33] |
Longtine, M.S., Wilson, N.M., Petracek, M.E. et al. A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1 Curr. Genet., 16 (1989),pp. 225-239
|
[34] |
Luger, K., Mader, A.W., Richmond, R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution Nature, 389 (1997),pp. 251-260
|
[35] |
Luo, K., Vega-Palas, M.A., Grunstein, M. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast Genes Dev., 16 (2002),pp. 1528-1539
|
[36] |
Maltby, V.E., Martin, B.J., Brind'Amour, J. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 18505-18510
|
[37] |
Martins-Taylor, K., Dula, M.L., Holmes, S.G. Heterochromatin spreading at yeast telomeres occurs in M phase Genetics, 168 (2004),pp. 65-75
|
[38] |
Meng, F.L., Hu, Y., Shen, N. et al. Sua5p a single-stranded telomeric DNA-binding protein facilitates telomere replication EMBO J., 28 (2009),pp. 1466-1478
|
[39] |
Mishra, K., Shore, D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins Curr. Biol., 9 (1999),pp. 1123-1126
|
[40] |
Moazed, D., Kistler, A., Axelrod, A. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 2186-2191
|
[41] |
Moretti, P., Freeman, K., Coodly, L. et al. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1 Genes Dev., 8 (1994),pp. 2257-2269
|
[42] |
Ng, H.H., Ciccone, D.N., Morshead, K.B. et al. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 1820-1825
|
[43] |
Osborne, E.A., Dudoit, S., Rine, J. The establishment of gene silencing at single-cell resolution Nat. Genet., 41 (2009),pp. 800-806
|
[44] |
Peng, J., Zhou, J.Q. The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance Nucleic Acids Res., 40 (2011),pp. 581-593
|
[45] |
Pina, B., Fernandez-Larrea, J., Garcia-Reyero, N. et al. The different (sur)faces of Rap1p Mol. Genet. Genomics, 268 (2003),pp. 791-798
|
[46] |
Poschke, H., Dees, M., Chang, M. et al. Rif2 promotes a telomere fold-back structure through Rpd3L recruitment in budding yeast PLoS Genet., 8 (2012),p. e1002960
|
[47] |
Radman-Livaja, M., Ruben, G., Weiner, A. et al. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization EMBO J., 30 (2011),pp. 1012-1026
|
[48] |
Rossetti, L., Cacchione, S., De Menna, A. et al. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites J. Mol. Biol., 306 (2001),pp. 903-913
|
[49] |
Roy, R., Meier, B., McAinsh, A.D. et al. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing J. Biol. Chem., 279 (2004),pp. 86-94
|
[50] |
Rusche, L.N., Kirchmaier, A.L., Rine, J. Annu. Rev. Biochem., 72 (2003),pp. 481-516
|
[51] |
Sabourin, M., Tuzon, C.T., Zakian, V.A. Mol. Cell, 27 (2007),pp. 550-561
|
[52] |
Shi, T., Bunker, R.D., Mattarocci, S. et al. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions Cell, 153 (2013),pp. 1340-1353
|
[53] |
Shogren-Knaak, M., Ishii, H., Sun, J.M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions Science, 311 (2006),pp. 844-847
|
[54] |
Shore, D., Nasmyth, K. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements Cell, 51 (1987),pp. 721-732
|
[55] |
Shore, D., Stillman, D.J., Brand, A.H. et al. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication EMBO J., 6 (1987),pp. 461-467
|
[56] |
Stavenhagen, J.B., Zakian, V.A. Genes Dev., 8 (1994),pp. 1411-1422
|
[57] |
Strahl-Bolsinger, S., Hecht, A., Luo, K. et al. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast Genes Dev., 11 (1997),pp. 83-93
|
[58] |
Strahl, B.D., Allis, C.D. The language of covalent histone modifications Nature, 403 (2000),pp. 41-45
|
[59] |
Suka, N., Luo, K., Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin Nat. Genet., 32 (2002),pp. 378-383
|
[60] |
Tanny, J.C., Dowd, G.J., Huang, J. et al. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing Cell, 99 (1999),pp. 735-745
|
[61] |
Tsukamoto, Y., Kato, J., Ikeda, H. Nature, 388 (1997),pp. 900-903
|
[62] |
Vandre, C.L., Kamakaka, R.T., Rivier, D.H. Genetics, 180 (2008),pp. 1407-1418
|
[63] |
Wellinger, R.J., Zakian, V.A. Genetics, 191 (2012),pp. 1073-1105
|
[64] |
Wotton, D., Shore, D. Genes Dev., 11 (1997),pp. 748-760
|
[65] |
Wright, J.H., Zakian, V.A. Nucleic Acids Res., 23 (1995),pp. 1454-1460
|
[66] |
Yarragudi, A., Miyake, T., Li, R. et al. Mol. Cell. Biol., 24 (2004),pp. 9152-9164
|
[67] |
Zhang, Z., Reese, J.C. Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning Methods Mol. Biol., 313 (2006),pp. 245-255
|