5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 5
May  2016
Turn off MathJax
Article Contents

Editorial Prerogative and the Plant Genome

doi: 10.1016/j.jgg.2016.03.004
More Information
  • Corresponding author: E-mail address: voytas@umn.edu (Daniel F. Voytas)
  • Received Date: 2016-03-11
  • Accepted Date: 2016-03-11
  • Available Online: 2016-03-22
  • Publish Date: 2016-05-20
  • loading
  • [1]
    Arnould, S., Delenda, C., Grizot, S. et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy Protein Eng. Des. Sel., 24 (2011),pp. 27-31
    [2]
    Baltes, N.J., Gil-Humanes, J., Cermak, T. et al. DNA replicons for plant genome engineering Plant Cell, 26 (2014),pp. 151-163
    [3]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [4]
    Cathomen, T., Joung, J.K. Zinc-finger nucleases: the next generation emerges Mol. Ther., 16 (2008),pp. 1200-1207
    [5]
    Cermak, T., Baltes, N.J., Cegan, R. et al. High-frequency, precise modification of the tomato genome Genome Biol., 16 (2015),p. 232
    [6]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [7]
    Clasen, B.M., Stoddard, T.J., Luo, S. et al. Improving cold storage and processing traits in potato through targeted gene knockout Plant Biotechnol. J., 14 (2016),pp. 169-176
    [8]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [9]
    Fauser, F., Roth, N., Pacher, M. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 7535-7540
    [10]
    Gepts, P. A comparison between crop domestication, classical breeding, and genetic engineering Crop Sci., 42 (2002),pp. 1780-1790
    [11]
    Giaever, G., Chu, A.M., Ni, L. et al. Nature, 418 (2002),pp. 387-391
    [12]
    Haun, W., Coffman, A., Clasen, B.M. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnol. J., 12 (2014),pp. 934-940
    [13]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [14]
    Jones, H.D. Regulatory uncertainty over genome editing Nat. Plants, 1 (2015),pp. 1-3
    [15]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [16]
    Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
    [17]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [18]
    Mao, Y., Zhang, Z., Feng, Z. et al. Plant Biotechnol. J., 14 (2016),pp. 519-532
    [19]
    Micke, A., Donini, B., Maluszynski, M.
    [20]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [21]
    Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution J. Exp. Bot., 56 (2005),pp. 1-14
    [22]
    Qi, Y., Zhang, Y., Zhang, F. et al. Genome Res., 23 (2013),pp. 547-554
    [23]
    Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [24]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [25]
    Sleper, D.A., Poehlman, J.M.
    [26]
    Sun, Y., Thompson, M., Lin, G. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization Plant Physiol., 144 (2007),pp. 1278-1291
    [27]
    Thakore, P.I., Black, J.B., Hilton, I.B. et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation Nat. Methods, 13 (2016),pp. 127-137
    [28]
    Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [29]
    Voytas, D.F. Plant genome engineering with sequence-specific nucleases Annu. Rev. Plant Biol., 64 (2013),pp. 327-350
    [30]
    Wang, Y., Cheng, X., Shan, Q. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [31]
    Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
    [32]
    Weeks, D.P., Spalding, M.H., Yang, B. Use of designer nucleases for targeted gene and genome editing in plants Plant Biotechnol. J., 14 (2016),pp. 483-495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return