[1] |
Andersen, O.M., Reiche, J., Schmidt, V. et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 13461-13466
|
[2] |
Arighi, C.N., Hartnell, L.M., Aguilar, R.C. et al. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor J. Cell Biol., 165 (2004),pp. 123-133
|
[3] |
Arlt, H., Reggiori, F., Ungermann, C. Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles J. Cell Sci., 128 (2015),pp. 645-655
|
[4] |
Bai, Z., Grant, B.D. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E1443-E1452
|
[5] |
Balderhaar, H.J., Arlt, H., Ostrowicz, C. et al. The Rab GTPase Ypt7 is linked to retromer-mediated receptor recycling and fusion at the yeast late endosome J. Cell Sci., 123 (2010),pp. 4085-4094
|
[6] |
Barr, F.A. Review series: Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol., 202 (2013),pp. 191-199
|
[7] |
Bean, B.D., Davey, M., Snider, J. et al. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes Mol. Biol. Cell, 26 (2015),pp. 1119-1128
|
[8] |
Belenkaya, T.Y., Wu, Y., Tang, X. et al. Dev. Cell, 14 (2008),pp. 120-131
|
[9] |
Bhuin, T., Roy, J.K. Rab proteins: the key regulators of intracellular vesicle transport Exp. Cell Res., 328 (2014),pp. 1-19
|
[10] |
Bonifacino, J.S., Hurley, J.H. Retromer. Curr. Opin. Cell Biol., 20 (2008),pp. 427-436
|
[11] |
Braschi, E., Goyon, V., Zunino, R. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes Curr. Biol., 20 (2010),pp. 1310-1315
|
[12] |
Bryant, D.M., Kerr, M.C., Hammond, L.A. et al. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin J. Cell Sci., 120 (2007),pp. 1818-1828
|
[13] |
Bugarcic, A., Vetter, I., Chalmers, S. et al. Vps26B-retromer negatively regulates plasma membrane resensitization of PAR-2 Cell Biol. Int., 39 (2015),pp. 1299-1306
|
[14] |
Bugarcic, A., Zhe, Y., Kerr, M.C. et al. Vps26A and Vps26B subunits define distinct retromer complexes Traffic, 12 (2011),pp. 1759-1773
|
[15] |
Bujny, M.V., Ewels, P.A., Humphrey, S. et al. J. Cell Sci., 121 (2008),pp. 2027-2036
|
[16] |
Bujny, M.V., Popoff, V., Johannes, L. et al. J. Cell Sci., 120 (2007),pp. 2010-2021
|
[17] |
Burd, C., Cullen, P.J. Retromer: a master conductor of endosome sorting Cold Spring Harb. Perspect. Biol., 6 (2014),p. a016774
|
[18] |
Carlton, J., Bujny, M., Peter, B.J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides Curr. Biol., 14 (2004),pp. 1791-1800
|
[19] |
Chen, C., Garcia-Santos, D., Ishikawa, Y. et al. Snx3 regulates recycling of the transferrin receptor and iron assimilation Cell Metab., 17 (2013),pp. 343-352
|
[20] |
Chen, D., Xiao, H., Zhang, K. et al. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling Science, 327 (2010),pp. 1261-1264
|
[21] |
Chi, R.J., Liu, J., West, M. et al. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1 J. Cell Biol., 204 (2014),pp. 793-806
|
[22] |
Chia, P.Z., Gleeson, P.A. Membrane tethering F1000Prime Rep., 6 (2014),p. 74
|
[23] |
Choy, R.W., Cheng, Z., Schekman, R. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2077-E2082
|
[24] |
Collins, B.M. The structure and function of the retromer protein complex Traffic, 9 (2008),pp. 1811-1822
|
[25] |
Cozier, G.E., Carlton, J., McGregor, A.H. et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation J. Biol. Chem., 277 (2002),pp. 48730-48736
|
[26] |
Cullen, P.J. Endosomal sorting and signalling: an emerging role for sorting nexins Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 574-582
|
[27] |
Di Paolo, G., De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics Nature, 443 (2006),pp. 651-657
|
[28] |
Dong, B., Kakihara, K., Otani, T. et al. Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control Nat. Commun., 4 (2013),p. 1358
|
[29] |
Feinstein, T.N., Wehbi, V.L., Ardura, J.A. et al. Retromer terminates the generation of cAMP by internalized PTH receptors Nat. Chem. Biol., 7 (2011),pp. 278-284
|
[30] |
Feinstein, T.N., Yui, N., Webber, M.J. et al. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin J. Biol. Chem., 288 (2013),pp. 27849-27860
|
[31] |
Fjorback, A.W., Seaman, M., Gustafsen, C. et al. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing J. Neurosci., 32 (2012),pp. 1467-1480
|
[32] |
Follett, J., Norwood, S.J., Hamilton, N.A. et al. The Vps35 D620N mutation linked to Parkinson's disease disrupts the cargo sorting function of retromer Traffic, 15 (2014),pp. 230-244
|
[33] |
Franch-Marro, X., Wendler, F., Guidato, S. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex Nat. Cell Biol., 10 (2008),pp. 170-177
|
[34] |
Freeman, C.L., Hesketh, G., Seaman, M.N. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation J. Cell Sci., 127 (2014),pp. 2053-2070
|
[35] |
Gallon, M., Clairfeuille, T., Steinberg, F. et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E3604-E3613
|
[36] |
Gallon, M., Cullen, P.J. Retromer and sorting nexins in endosomal sorting Biochem. Soc. Trans., 43 (2015),pp. 33-47
|
[37] |
Ghai, R., Mobli, M., Norwood, S.J. et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 7763-7768
|
[38] |
Ghai, R., Tello-Lafoz, M., Norwood, S.J. et al. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells J. Cell Sci., 128 (2015),pp. 553-565
|
[39] |
Gleason, R.J., Akintobi, A.M., Grant, B.D. et al. BMP signaling requires retromer-dependent recycling of the type I receptor Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 2578-2583
|
[40] |
Gokool, S., Tattersall, D., Seaman, M.N. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval Traffic, 8 (2007),pp. 1873-1886
|
[41] |
Gomez-Lamarca, M.J., Snowdon, L.A., Seib, E. et al. Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling J. Cell Biol., 210 (2015),pp. 303-318
|
[42] |
Gomez, T.S., Billadeau, D.D. A FAM21-containing WASH complex regulates retromer-dependent sorting Dev. Cell, 17 (2009),pp. 699-711
|
[43] |
Granger, E., McNee, G., Allan, V. et al. The role of the cytoskeleton and molecular motors in endosomal dynamics Semin. Cell Dev. Biol., 31 (2014),pp. 20-29
|
[44] |
Haft, C.R., de la Luz Sierra, M., Bafford, R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes Mol. Biol. Cell, 11 (2000),pp. 4105-4116
|
[45] |
Hara, S., Kiyokawa, E., Iemura, S. et al. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport Mol. Biol. Cell, 19 (2008),pp. 3823-3835
|
[46] |
Harbour, M.E., Breusegem, S.Y., Antrobus, R. et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics J. Cell Sci., 123 (2010),pp. 3703-3717
|
[47] |
Harbour, M.E., Breusegem, S.Y., Seaman, M.N. Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35 Biochem. J., 442 (2012),pp. 209-220
|
[48] |
Harbour, M.E., Seaman, M.N. Evolutionary variations of VPS29, and their implications for the heteropentameric model of retromer Commun. Integr. Biol., 4 (2011),pp. 619-622
|
[49] |
Harrison, M.S., Hung, C.S., Liu, T.T. et al. A mechanism for retromer endosomal coat complex assembly with cargo Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 267-272
|
[50] |
Harterink, M., Port, F., Lorenowicz, M.J. et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion Nat. Cell Biol., 13 (2011),pp. 914-923
|
[51] |
Hesketh, G.G., Perez-Dorado, I., Jackson, L.P. et al. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface Dev. Cell, 29 (2014),pp. 591-606
|
[52] |
Hierro, A., Rojas, A.L., Rojas, R. et al. Functional architecture of the retromer cargo-recognition complex Nature, 449 (2007),pp. 1063-1067
|
[53] |
Hong, Z., Yang, Y., Zhang, C. et al. The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport Cell Res., 19 (2009),pp. 1334-1349
|
[54] |
Horazdovsky, B.F., Davies, B.A., Seaman, M.N. et al. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor Mol. Biol. Cell, 8 (1997),pp. 1529-1541
|
[55] |
Hsiao, J.C., Chu, L.W., Lo, Y.T. et al. Intracellular transport of vaccinia virus in HeLa cells requires WASH-VPEF/FAM21-retromer complexes and recycling molecules Rab11 and Rab22 J. Virol., 89 (2015),pp. 8365-8382
|
[56] |
Jaillais, Y., Fobis-Loisy, I., Miege, C. et al. Nature, 443 (2006),pp. 106-109
|
[57] |
Jaillais, Y., Santambrogio, M., Rozier, F. et al. The retromer protein VPS29 links cell polarity and organ initiation in plants Cell, 130 (2007),pp. 1057-1070
|
[58] |
Jia, D., Gomez, T.S., Billadeau, D.D. et al. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer Mol. Biol. Cell, 23 (2012),pp. 2352-2361
|
[59] |
Jia, D., Gomez, T.S., Metlagel, Z. et al. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10442-10447
|
[60] |
Koharudin, L.M., Furey, W., Liu, H. et al. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) J. Biol. Chem., 284 (2009),pp. 23697-23707
|
[61] |
Kooner, J.S., Saleheen, D., Sim, X. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci Nat. Genet., 43 (2011),pp. 984-989
|
[62] |
Lauffer, B.E., Melero, C., Temkin, P. et al. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane J. Cell Biol., 190 (2010),pp. 565-574
|
[63] |
Lieu, Z.Z., Gleeson, P.A. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin Eur. J. Cell Biol., 89 (2010),pp. 379-393
|
[64] |
Lipovsky, A., Popa, A., Pimienta, G. et al. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 7452-7457
|
[65] |
Liu, T.T., Gomez, T.S., Sackey, B.K. et al. Rab GTPase regulation of retromer-mediated cargo export during endosome maturation Mol. Biol. Cell, 23 (2012),pp. 2505-2515
|
[66] |
Lohia, M., Qin, Y., Macara, I.G. The scribble polarity protein stabilizes E-cadherin/p120-catenin binding and blocks retrieval of E-cadherin to the golgi PLoS One, 7 (2012),p. e51130
|
[67] |
Ma, J., Nakagawa, Y., Kojima, I. et al. Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes J. Biol. Chem., 289 (2014),pp. 133-142
|
[68] |
McDonough, J.A., Newton, H.J., Klum, S. et al. mBio, 4 (2013),pp. e00606-e00612
|
[69] |
McGough, I.J., Steinberg, F., Gallon, M. et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling J. Cell Sci., 127 (2014),pp. 4940-4953
|
[70] |
McGough, I.J., Steinberg, F., Jia, D. et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation Curr. Biol., 24 (2014),pp. 1670-1676
|
[71] |
McKenzie, J.E., Raisley, B., Zhou, X. et al. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi Traffic, 13 (2012),pp. 1140-1159
|
[72] |
Miserey-Lenkei, S., Waharte, F., Boulet, A. et al. Rab6-interacting protein 1 links Rab6 and Rab11 function Traffic, 8 (2007),pp. 1385-1403
|
[73] |
Miura, E., Hasegawa, T., Konno, M. et al. Neurobiol. Dis., 71 (2014),pp. 1-13
|
[74] |
Morabito, M.V., Berman, D.E., Schneider, R.T. et al. Hyperleucinemia causes hippocampal retromer deficiency linking diabetes to Alzheimer's disease Neurobiol. Dis., 65 (2014),pp. 188-192
|
[75] |
Muhammad, A., Flores, I., Zhang, H. et al. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 7327-7332
|
[76] |
Mukadam, A.S., Seaman, M.N. Retromer-mediated endosomal protein sorting: the role of unstructured domains FEBS Lett., 589 (2015),pp. 2620-2626
|
[77] |
Munch, D., Teh, O.K., Malinovsky, F.G. et al. Plant Cell, 27 (2015),pp. 463-479
|
[78] |
Munsie, L.N., Milnerwood, A.J., Seibler, P. et al. Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N Hum. Mol. Genet., 24 (2015),pp. 1691-1703
|
[79] |
Nicoziani, P., Vilhardt, F., Llorente, A. et al. Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor Mol. Biol. Cell, 11 (2000),pp. 481-495
|
[80] |
Nielsen, M.S., Gustafsen, C., Madsen, P. et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA Mol. Cell. Biol., 27 (2007),pp. 6842-6851
|
[81] |
Niu, Y., Zhang, C., Sun, Z. et al. Nat. Cell Biol., 15 (2013),pp. 417-429
|
[82] |
Norwood, S.J., Shaw, D.J., Cowieson, N.P. et al. Assembly and solution structure of the core retromer protein complex Traffic, 12 (2011),pp. 56-71
|
[83] |
Nothwehr, S.F., Bruinsma, P., Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment Mol. Biol. Cell, 10 (1999),pp. 875-890
|
[84] |
Nothwehr, S.F., Ha, S.A., Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p J. Cell Biol., 151 (2000),pp. 297-309
|
[85] |
Offe, K., Dodson, S.E., Shoemaker, J.T. et al. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments J. Neurosci., 26 (2006),pp. 1596-1603
|
[86] |
Pan, C.L., Baum, P.D., Gu, M. et al. Dev. Cell, 14 (2008),pp. 132-139
|
[87] |
Petersen, C.M., Nielsen, M.S., Nykjær, A. et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography J. Biol. Chem., 272 (1997),pp. 3599-3605
|
[88] |
Pfeffer, S.R. Rab GTPase regulation of membrane identity Curr. Opin. Cell Biol., 25 (2013),pp. 414-419
|
[89] |
Pim, D., Broniarczyk, J., Bergant, M. et al. A novel PDZ domain interaction mediates the binding between human papillomavirus 16 L2 and sorting nexin 27 and modulates virion trafficking J. Virol., 89 (2015),pp. 10145-10155
|
[90] |
Pocha, S.M., Wassmer, T., Niehage, C. et al. Retromer controls epithelial cell polarity by trafficking the apical determinant crumbs Curr. Biol., 21 (2011),pp. 1111-1117
|
[91] |
Popa, A., Zhang, W., Harrison, M.S. et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection PLoS Pathog., 11 (2015),p. e1004699
|
[92] |
Popoff, V., Mardones, G.A., Tenza, D. et al. The retromer complex and clathrin define an early endosomal retrograde exit site J. Cell Sci., 120 (2007),pp. 2022-2031
|
[93] |
Port, F., Kuster, M., Herr, P. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless Nat. Cell Biol., 10 (2008),pp. 178-185
|
[94] |
Rojas, R., van Vlijmen, T., Mardones, G.A. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7 J. Cell Biol., 183 (2008),pp. 513-526
|
[95] |
Scherzer, C.R., Offe, K., Gearing, M. et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease Arch. Neurol., 61 (2004),pp. 1200-1205
|
[96] |
Seaman, M.N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer J. Cell Biol., 165 (2004),pp. 111-122
|
[97] |
Seaman, M.N., Harbour, M.E., Tattersall, D. et al. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5 J. Cell Sci., 122 (2009),pp. 2371-2382
|
[98] |
Seaman, M.N., Marcusson, E.G., Cereghino, J.L. et al. J. Cell Biol., 137 (1997),pp. 79-92
|
[99] |
Seaman, M.N., McCaffery, J.M., Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast J. Cell Biol., 142 (1998),pp. 665-681
|
[100] |
Seaman, M.N., Williams, H.P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p Mol. Biol. Cell, 13 (2002),pp. 2826-2840
|
[101] |
Seaman, M.N.J. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval J. Cell Sci., 120 (2007),pp. 2378-2389
|
[102] |
Seet, L.F., Hong, W. The Phox (PX) domain proteins and membrane traffic Biochim. Biophys. Acta, 1761 (2006),pp. 878-896
|
[103] |
Selyunin, A.S., Mukhopadhyay, S. A conserved structural motif mediates retrograde trafficking of shiga toxin types 1 and 2 Traffic, 16 (2015),pp. 1270-1287
|
[104] |
Shi, A., Sun, L., Banerjee, R. et al. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8 EMBO J., 28 (2009),pp. 3290-3302
|
[105] |
Shi, H., Rojas, R., Bonifacino, J.S. et al. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain Nat. Struct. Mol. Biol., 13 (2006),pp. 540-548
|
[106] |
Small, S.A., Gandy, S. Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis Neuron, 52 (2006),pp. 15-31
|
[107] |
Small, S.A., Kent, K., Pierce, A. et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease Ann. Neurol., 58 (2005),pp. 909-919
|
[108] |
Steinberg, F., Gallon, M., Winfield, M. et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport Nat. Cell Biol., 15 (2013),pp. 461-471
|
[109] |
Strochlic, T.I., Setty, T.G., Sitaram, A. et al. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling J. Cell Biol., 177 (2007),pp. 115-125
|
[110] |
Sullivan, C.P., Jay, A.G., Stack, E.C. et al. Retromer disruption promotes amyloidogenic APP processing Neurobiol. Dis., 43 (2011),pp. 338-345
|
[111] |
Swarbrick, J.D., Shaw, D.J., Chhabra, S. et al. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins PLoS One, 6 (2011),p. e20420
|
[112] |
Tabuchi, M., Yanatori, I., Kawai, Y. et al. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1 J. Cell Sci., 123 (2010),pp. 756-766
|
[113] |
Tamura, N., Mima, J. Biol. Open, 3 (2014),pp. 1108-1115
|
[114] |
Tang, F.L., Erion, J.R., Tian, Y. et al. VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for alpha-synuclein degradation and prevention of pathogenesis of Parkinson's disease J. Neurosci., 35 (2015),pp. 10613-10628
|
[115] |
Tang, F.L., Liu, W., Hu, J.X. et al. Cell Rep., 12 (2015),pp. 1631-1643
|
[116] |
Teasdale, R.D., Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease Biochem. J., 441 (2012),pp. 39-59
|
[117] |
Tello-Lafoz, M., Ghai, R., Collins, B. et al. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse Bioarchitecture, 4 (2014),pp. 215-220
|
[118] |
Temkin, P., Lauffer, B., Jager, S. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors Nat. Cell Biol., 13 (2011),pp. 715-721
|
[119] |
Thazar-Poulot, N., Miquel, M., Fobis-Loisy, I. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 4158-4163
|
[120] |
van Weering, J.R., Sessions, R.B., Traer, C.J. et al. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules EMBO J., 31 (2012),pp. 4466-4480
|
[121] |
Vardarajan, B.N., Bruesegem, S.Y., Harbour, M.E. et al. Identification of Alzheimer disease-associated variants in genes that regulate retromer function Neurobiol. Aging, 33 (2012)
|
[122] |
Verges, M., Luton, F., Gruber, C. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor Nat. Cell Biol., 6 (2004),pp. 763-769
|
[123] |
Vieira, S.I., Rebelo, S., Esselmann, H. et al. Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated Mol. Neurodegener., 5 (2010),p. 40
|
[124] |
Vilarino-Guell, C., Wider, C., Ross, O.A. et al. Am. J. Hum. Genet., 89 (2011),pp. 162-167
|
[125] |
Voos, W., Stevens, T.H. J. Cell Biol., 140 (1998),pp. 577-590
|
[126] |
Wandinger-Ness, A., Zerial, M. Rab proteins and the compartmentalization of the endosomal system Cold Spring Harb. Perspect. Biol., 6 (2014),p. a022616
|
[127] |
Wang, S., Tan, K.L., Agosto, M.A. et al. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration PLoS Biol., 12 (2014),p. e1001847
|
[128] |
Wassmer, T., Attar, N., Bujny, M.V. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer J. Cell Sci., 120 (2007),pp. 45-54
|
[129] |
Wassmer, T., Attar, N., Harterink, M. et al. Dev. Cell, 17 (2009),pp. 110-122
|
[130] |
Wen, L., Tang, F.L., Hong, Y. et al. VPS35 haploinsufficiency increases Alzheimer's disease neuropathology J. Cell Biol., 195 (2011),pp. 765-779
|
[131] |
Willnow, T.E., Petersen, C.M., Nykjaer, A. VPS10P-domain receptors – regulators of neuronal viability and function Nat. Rev. Neurosci., 9 (2008),pp. 899-909
|
[132] |
Xu, Y., Hortsman, H., Seet, L. et al. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P Nat. Cell Biol., 3 (2001),pp. 658-666
|
[133] |
Yang, P.T., Lorenowicz, M.J., Silhankova, M. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells Dev. Cell, 14 (2008),pp. 140-147
|
[134] |
Yin, X., Murphy, S.J., Wilkes, M.C. et al. Mol. Biol. Cell, 24 (2013),pp. 2285-2298
|
[135] |
Zavodszky, E., Seaman, M.N., Moreau, K. et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy Nat. Commun., 5 (2014),p. 3828
|
[136] |
Zelazny, E., Santambrogio, M., Pourcher, M. et al. J. Biol. Chem., 288 (2013),pp. 8815-8825
|
[137] |
Zhang, D., Isack, N.R., Glodowski, D.R. et al. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway J. Cell Biol., 196 (2012),pp. 85-101
|
[138] |
Zhang, P., Wu, Y., Belenkaya, T.Y. et al. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless Cell Res., 21 (2011),pp. 1677-1690
|
[139] |
Zhong, Q., Lazar, C.S., Tronchere, H. et al. Endosomal localization and function of sorting nexin 1 Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 6767-6772
|
[140] |
Zhou, B., Wu, Y., Lin, X. Retromer regulates apical-basal polarity through recycling crumbs Dev. Biol., 360 (2011),pp. 87-95
|
[141] |
Zimprich, A., Benet-Pages, A., Struhal, W. et al. Am. J. Hum. Genet., 89 (2011),pp. 168-175
|