[1] |
Caxaria, S., Arthold, S., Nathwani, A.C. et al. Generation of integration-free patient specific iPS cells using episomal plasmids under feeder free conditions Methods Mol. Biol., 1353 (2016),pp. 355-366
|
[2] |
Hockemeyer, D., Soldner, F., Cook, E.G. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency Cell Stem Cell, 3 (2008),pp. 346-353
|
[3] |
Hou, P., Li, Y., Zhang, X. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds Science, 341 (2013),pp. 651-654
|
[4] |
Hu, B.Y., Weick, J.P., Yu, J. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 4335-4340
|
[5] |
Kim, D., Kim, C.H., Moon, J.I. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins Cell Stem Cell, 4 (2009),pp. 472-476
|
[6] |
Kriks, S., Shim, J.W., Piao, J. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease Nature, 480 (2011),pp. 547-551
|
[7] |
Kuzyk, A., Mai, S. c-MYC-induced genomic instability Cold Spring Harb. Perspect. Med., 4 (2014),p. a014373
|
[8] |
Lee, A.S., Tang, C., Rao, M.S. et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies Nat. Med., 19 (2013),pp. 998-1004
|
[9] |
Miyoshi, N., Ishii, H., Nagano, H. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs Cell Stem Cell, 8 (2011),pp. 633-638
|
[10] |
Okita, K., Matsumura, Y., Sato, Y. et al. A more efficient method to generate integration-free human iPS cells Nat. Methods, 8 (2011),pp. 409-412
|
[11] |
Piao, Y., Hung, S.S., Lim, S.Y. et al. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors Stem Cells Transl. Med., 3 (2014),pp. 787-791
|
[12] |
Schlaeger, T.M., Daheron, L., Brickler, T.R. et al. A comparison of non-integrating reprogramming methods Nat. Biotechnol., 33 (2015),pp. 58-63
|
[13] |
Stadtfeld, M., Nagaya, M., Utikal, J. et al. Induced pluripotent stem cells generated without viral integration Science, 322 (2008),pp. 945-949
|
[14] |
Su, R.J., Baylink, D.J., Neises, A. et al. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors PLoS One, 8 (2013),p. e64496
|
[15] |
Takahashi, K., Tanabe, K., Ohnuki, M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell, 131 (2007),pp. 861-872
|
[16] |
Wang, J., Gu, Q., Hao, J. et al. Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells Genomics Proteomics Bioinformatics, 11 (2013),pp. 304-311
|
[17] |
Wang, Y., Chen, J., Hu, J.L. et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors EMBO Rep., 12 (2011),pp. 373-378
|
[18] |
Warren, L., Manos, P.D., Ahfeldt, T. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA Cell Stem Cell, 7 (2010),pp. 618-630
|
[19] |
Yoshida, Y., Takahashi, K., Okita, K. et al. Hypoxia enhances the generation of induced pluripotent stem cells Cell Stem Cell, 5 (2009),pp. 237-241
|
[20] |
Zhao, X.Y., Li, W., Lv, Z. et al. Efficient and rapid generation of induced pluripotent stem cells using an alternative culture medium Cell Res., 20 (2010),pp. 383-386
|