[1] |
Alfinito, P.D., Townes-Anderson, E. Activation of mislocalized opsin kills rod cells: a novel mechanism for rod cell death in retinal disease Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 5655-5660
|
[2] |
Avidor-Reiss, T., Maer, A.M., Koundakjian, E. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis Cell, 117 (2004),pp. 527-539
|
[3] |
Berbari, N.F., Pasek, R.C., Malarkey, E.B. et al. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 7796-7801
|
[4] |
Bhogaraju, S., Engel, B.D., Lorentzen, E. Intraflagellar transport complex structure and cargo interactions Cilia, 2 (2013),p. 10
|
[5] |
Bhowmick, R., Li, M., Sun, J. et al. Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin Traffic, 10 (2009),pp. 648-663
|
[6] |
Carson, F.L.
|
[7] |
Davis, R.E., Swiderski, R.E., Rahmouni, K. et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 19422-19427
|
[8] |
Eguether, T., San Agustin, J.T., Keady, B.T. et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment Dev. Cell, 31 (2014),pp. 279-290
|
[9] |
Forsythe, E., Beales, P.L. Bardet-Biedl syndrome Eur. J. Hum. Genet., 21 (2013),pp. 8-13
|
[10] |
Gilliam, J.C., Chang, J.T., Sandoval, I.M. et al. Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration Cell, 151 (2012),pp. 1029-1041
|
[11] |
Guo, D.F., Beyer, A.M., Yang, B. et al. Inactivation of Bardet-Biedl syndrome genes causes kidney defects Am. J. Physiol. Renal Physiol., 300 (2011),pp. F574-F580
|
[12] |
Imhoff, O., Marion, V., Stoetzel, C. et al. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort Clin. J. Am. Soc. Nephrol., 6 (2011),pp. 22-29
|
[13] |
Jin, H., White, S.R., Shida, T. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia Cell, 141 (2010),pp. 1208-1219
|
[14] |
Kang, S.G., Park, J., Cho, J.Y. et al. Complementary roles of retinoic acid and TGF-beta1 in coordinated expression of mucosal integrins by T cells Mucosal Immunol., 4 (2011),pp. 66-82
|
[15] |
Kaplan, O.I., Molla-Herman, A., Cevik, S. et al. J. Cell Sci., 123 (2010),pp. 3966-3977
|
[16] |
Kim, J.C., Badano, J.L., Sibold, S. et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression Nat. Genet., 36 (2004),pp. 462-470
|
[17] |
Kiss, H., Kedra, D., Kiss, C. et al. Genomics, 73 (2001),pp. 10-19
|
[18] |
Kulaga, H.M., Leitch, C.C., Eichers, E.R. et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse Nat. Genet., 36 (2004),pp. 994-998
|
[19] |
Lee, J.H., Ulrich, B., Cho, J. et al. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells J. Immunol., 187 (2011),pp. 1778-1787
|
[20] |
Marion, V., Mockel, A., De Melo, C. et al. BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response Cell Metab., 16 (2012),pp. 363-377
|
[21] |
Marion, V., Stutzmann, F., Gerard, M. et al. J. Med. Genet., 49 (2012),pp. 317-321
|
[22] |
Mykytyn, K., Mullins, R.F., Andrews, M. et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 8664-8669
|
[23] |
Nachury, M.V. How do cilia organize signalling cascades? Philos. Trans. R. Soc. B Biol. Sci., 369 (2014),p. 20130465
|
[24] |
Nachury, M.V., Loktev, A.V., Zhang, Q. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis Cell, 129 (2007),pp. 1201-1213
|
[25] |
Nishimura, D.Y., Fath, M., Mullins, R.F. et al. Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 16588-16593
|
[26] |
Oh, E.C., Vasanth, S., Katsanis, N. Metabolic regulation and energy homeostasis through the primary cilium Cell Metab., 21 (2015),pp. 21-31
|
[27] |
Pampliega, O., Orhon, I., Patel, B. et al. Functional interaction between autophagy and ciliogenesis Nature, 502 (2013),pp. 194-200
|
[28] |
Patil, H., Tserentsoodol, N., Saha, A. et al. Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons Cell Death Dis., 3 (2012),p. e355
|
[29] |
Pazour, G.J., Baker, S.A., Deane, J.A. et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance J. Cell Biol., 157 (2002),pp. 103-113
|
[30] |
Pedersen, L.B., Christensen, S.T. Regulating intraflagellar transport Nat. Cell Biol., 14 (2012),pp. 904-906
|
[31] |
Pigino, G., Geimer, S., Lanzavecchia, S. et al. J. Cell Biol., 187 (2009),pp. 135-148
|
[32] |
Rachel, R.A., Nagashima, K., O'Sullivan, T.N. et al. PLoS One, 7 (2012),p. e42446
|
[33] |
Sakurai, T., Ogasawara, J., Kizaki, T. et al. Involvement of leucine zipper transcription factor-like protein 1 (Lztfl1) in the attenuation of cognitive impairment by exercise training Biochem. Biophys. Res. Commun., 416 (2011),pp. 125-129
|
[34] |
Schaefer, E., Lauer, J., Durand, M. et al. Clin. Genet., 85 (2014),pp. 476-481
|
[35] |
Scholey, J.M. Intraflagellar transport motors in cilia: moving along the cell's antenna J. Cell Biol., 180 (2008),pp. 23-29
|
[36] |
Seo, S., Zhang, Q., Bugge, K. et al. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened PLoS Genet., 7 (2011),p. e1002358
|
[37] |
Sheffield, V.C. The blind leading the obese: the molecular pathophysiology of a human obesity syndrome Trans. Am. Clin. Climatol. Assoc., 121 (2010),pp. 172-181
|
[38] |
Tang, Z., Lin, M.G., Stowe, T.R. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites Nature, 502 (2013),pp. 254-257
|
[39] |
Taschner, M., Bhogaraju, S., Vetter, M. et al. Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits J. Biol. Chem., 286 (2011),pp. 26344-26352
|
[40] |
van Dam, T.J., Townsend, M.J., Turk, M. et al. Evolution of modular intraflagellar transport from a coatomer-like progenitor Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 6943-6948
|
[41] |
Wei, Q., Zhang, Y., Li, Y. et al. The BBSome controls IFT assembly and turnaround in cilia Nat. Cell Biol., 14 (2012),pp. 950-957
|
[42] |
Wei, Q., Zhou, W., Wang, W. et al. Tumor-suppressive functions of leucine zipper transcription factor-like 1 Cancer Res., 70 (2010),pp. 2942-2950
|
[43] |
Williams, C.L., McIntyre, J.C., Norris, S.R. et al. Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia Nat. Commun., 5 (2014),p. 5813
|
[44] |
Wright, A.F., Chakarova, C.F., Abd El-Aziz, M.M. et al. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait Nat. Rev. Genet., 11 (2010),pp. 273-284
|
[45] |
Yen, H.J., Tayeh, M.K., Mullins, R.F. et al. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function Hum. Mol. Genet., 15 (2006),pp. 667-677
|
[46] |
Zhang, Q., Nishimura, D., Seo, S. et al. Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 20678-20683
|
[47] |
Zhang, Q., Nishimura, D., Vogel, T. et al. BBS7 is required for BBSome formation and its absence in mice results in Bardet-Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking J. Cell Sci., 126 (2013),pp. 2372-2380
|
[48] |
Zhang, Y., Seo, S., Bhattarai, S. et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies Hum. Mol. Genet., 23 (2014),pp. 40-51
|