5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 1
Jan.  2016
Turn off MathJax
Article Contents

Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9

doi: 10.1016/j.jgg.2015.10.006
More Information
  • Corresponding author: E-mail address: jlai@cau.edu.cn (Jinsheng Lai)
  • Received Date: 2015-09-30
  • Accepted Date: 2015-10-29
  • Rev Recd Date: 2015-10-27
  • Available Online: 2015-12-21
  • Publish Date: 2016-01-20
  • CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) is an adaptive immune system in bacteria and archaea to defend against invasion from foreign DNA fragments. Recently, it has been developed as a powerful targeted genome editing tool for a wide variety of species. However, its application in maize has only been tested with transiently expressed somatic cells or with a limited number of stable transgenic T0 plants. The exact efficiency and specificity of the CRISPR/Cas system in the highly complex maize genome has not been documented yet. Here we report an extensive study of the well-studied type II CRISPR-Cas9 system for targeted genome editing in maize, with the codon-optimized Cas9 protein and the short non-coding guide RNA generated through a functional maize U6 snRNA promoter. Targeted gene mutagenesis was detected for 90 loci by maize protoplast assay, with an average cleavage efficiency of 10.67%. Stable knockout transformants for maize phytoene synthase gene (PSY1) were obtained. Mutations occurred in germ cells can be stably inherited to the next generation. Moreover, no off-target effect was detected at the computationally predicted putative off-target loci. No significant difference between the transcriptomes of the Cas9 expressed and non-expressed lines was detected. Our results confirmed that the CRISPR-Cas9 could be successfully applied as a robust targeted genome editing system in maize.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Ainley, W.M., Sastry-Dent, L., Welter, M.E. et al. Plant Biotechnol. J., 11 (2013),pp. 1126-1134
    [2]
    Brooks, C., Nekrasov, V., Lippman, Z.B. et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system Plant Physiol., 166 (2014),pp. 1292-1297
    [3]
    Buckner, B., Kelson, T.L., Robertson, D.S. Plant Cell, 2 (1990),pp. 867-876
    [4]
    Buckner, B., San Miguel, P., Janick-Buckner, D. et al. Genetics, 143 (1996),pp. 479-488
    [5]
    Campbell, F., Setzer, D.R. Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition Mol. Cell. Biol., 12 (1992),pp. 2260-2272
    [6]
    Char, S.N., Unger-Wallace, E., Frame, B. et al. Heritable site-specific mutagenesis using TALENs in maize Plant Biotechnol. J., 13 (2015),pp. 1002-1010
    [7]
    Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
    [8]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [9]
    Christian, M., Qi, Y., Zhang, Y. et al. G3, 3 (2013),pp. 1697-1705
    [10]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [11]
    Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
    [12]
    Das, G., Henning, D., Wright, D. et al. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III EMBO J., 7 (1988),pp. 503-512
    [13]
    Feng, Z., Mao, Y., Xu, N. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 4632-4637
    [14]
    Feng, Z.Y., Zhang, B.T., Ding, W.N. et al. Efficient genome editing in plants using a CRISPR/Cas system Cell Res., 23 (2013),pp. 1229-1232
    [15]
    Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [16]
    Garneau, J.E., Dupuis, M.-È., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [17]
    Goff, S.A., Ricke, D., Lan, T.-H. et al. Science, 296 (2002),pp. 92-100
    [18]
    Haun, W., Coffman, A., Clasen, B.M. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnol. J., 12 (2014),pp. 934-940
    [19]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [20]
    Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. et al. Targeted genome modifications in soybean with CRISPR/Cas9 BMC Biotechnol., 15 (2015),p. 16
    [21]
    Jia, H., Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA PLoS One, 9 (2014),p. e93806
    [22]
    Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
    [23]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [24]
    Kim, Y.-G., Cha, J., Chandrasegaran, S. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
    [25]
    Kuscu, C., Arslan, S., Singh, R. et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease Nat. Biotechnol., 32 (2014),pp. 677-683
    [26]
    Lees-Miller, S., Meek, K. Repair of DNA double strand breaks by non-homologous end joining Biochimie, 85 (2003),pp. 1161-1173
    [27]
    Li, J.-F., Norville, J.E., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
    [28]
    Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [29]
    Liang, Z., Zhang, K., Chen, K. et al. J. Genet. Genomics, 41 (2014),pp. 63-68
    [30]
    Ling, H.-Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [31]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [32]
    Mao, Y., Zhang, H., Xu, N. et al. Application of the CRISPR-Cas system for efficient genome engineering in plants Mol. Plant, 6 (2013),pp. 2008-2011
    [33]
    Marraffini, L.A., Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea Nat. Rev. Genet., 11 (2010),pp. 181-190
    [34]
    McVey, M., Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings Trends Genet., 24 (2008),pp. 529-538
    [35]
    Miao, J., Guo, D., Zhang, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system Cell Res., 23 (2013),p. 1233
    [36]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [37]
    Nekrasov, V., Staskawicz, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
    [38]
    Osakabe, K., Osakabe, Y., Toki, S. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12034-12039
    [39]
    Park, J., Kunkel, G.R. Biochem. Biophys. Res. Commun., 214 (1995),pp. 934-940
    [40]
    Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [41]
    Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
    [42]
    Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [43]
    Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant, 6 (2013),pp. 1365-1368
    [44]
    Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [45]
    Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
    [46]
    Sugano, S.S., Shirakawa, M., Takagi, J. et al. Plant Cell Physiol., 55 (2014),pp. 475-481
    [47]
    Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [48]
    Veretnik, S., Rubenstein, I. Nucleotide sequence of a maize U6 gene Nucleic Acids Res., 18 (1990)
    [49]
    Wang, S., Zhang, S., Wang, W. et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system Plant Cell Rep., 34 (2015),pp. 1473-1476
    [50]
    Wang, Y.P., Cheng, X., Shan, Q.W. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [51]
    Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
    [52]
    Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
    [53]
    Wyman, C., Ristic, D., Kanaar, R. Homologous recombination-mediated double-strand break repair DNA Repair, 3 (2004),pp. 827-833
    [54]
    Xie, K., Yang, Y. RNA-guided genome editing in plants using a CRISPR–Cas system Mol. Plant, 6 (2013),pp. 1975-1983
    [55]
    Xing, H.L., Li, D., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014)
    [56]
    Yoo, S.-D., Cho, Y.-H., Sheen, J. Nat. Protoc., 2 (2007),pp. 1565-1572
    [57]
    Zecherle, G.N., Whelen, S., Hall, B.D. Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression Mol. Cell. Biol., 16 (1996),pp. 5801-5810
    [58]
    Zhu, T., Peterson, D.J., Tagliani, L. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 8768-8773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return