[1] |
Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
|
[2] |
Candela, H., Hake, S. The art and design of genetic screens: maize Nat. Rev. Genet., 9 (2008),pp. 192-203
|
[3] |
Carroll, D. Genome engineering with zinc-finger nucleases Genetics, 188 (2011),pp. 773-782
|
[4] |
Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
|
[5] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[6] |
Dillon, N., Festenstein, R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility Trends Genet., 18 (2002),pp. 252-258
|
[7] |
Feng, Z.Y., Mao, Y., Xu, N. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 4632-4637
|
[8] |
Feng, Z.Y., Zhang, B.T., Ding, W.N. et al. Efficient genome editing in plants using a CRISPR/Cas system Cell Res., 23 (2013),pp. 1229-1232
|
[9] |
Fauser, F., Schiml, S., Puchta, H. Plant J., 79 (2014),pp. 348-359
|
[10] |
Frame, B.R., Shou, H., Chikwamba, R.K. et al. Plant Physiol., 129 (2002),pp. 13-22
|
[11] |
Fu, S., Lv, Z., Gao, Z. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 6033-6036
|
[12] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[13] |
He, G., Chen, B., Wang, X. et al. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids Genome Biol., 14 (2013),p. R57
|
[14] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[15] |
Hwang, W.Y., Fu, Y.F., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[16] |
Jia, H., Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA PLoS One, 9 (2014),p. e93806
|
[17] |
Jiang, W.Y., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
|
[18] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[19] |
Johnson, R.A., Gurevich, V., Filler, S. et al. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta Plant Mol. Biol., 87 (2015),pp. 143-156
|
[20] |
Joung, J.K., Sander, J.D. TALENs: a widely applicable technology for targeted genome editing Nat. Rev. Mol. Cell Biol., 14 (2012),pp. 49-55
|
[21] |
Leader, D.J., Connelly, S., Filipowicz, W. et al. Biochim. Biophys. Acta, 1219 (1994),pp. 145-147
|
[22] |
Li, D.L., Qiu, Z.W., Shao, Y.J. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 681-683
|
[23] |
Li, J.F., Norville, J.E., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
|
[24] |
Liang, Z., Zhang, K., Chen, K. et al. J. Genet. Genomics, 41 (2014),pp. 63-68
|
[25] |
Lu, X.M., Hu, X.J., Zhao, Y.Z. et al. Mol. Plant, 5 (2012),pp. 1100-1112
|
[26] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[27] |
Nekrasov, V., Staskawicz, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
|
[28] |
Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
|
[29] |
Perez-Pinera, P., Ousterout, D.G., Gersbach, C.A. Advances in targeted genome editing Curr. Opin. Chem. Biol., 16 (2012),pp. 268-277
|
[30] |
Puchta, H., Fauser, F. Gene targeting in plants: 25 years later Int. J. Dev. Biol., 57 (2013),pp. 629-637
|
[31] |
Shan, Q.W., Wang, Y.P., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[32] |
Svitashev, S., Young, J., Schwartz, C. et al. Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA Plant Physiol., 169 (2015),pp. 931-945
|
[33] |
Wolfgruber, T.K., Sharma, A., Schneider, K.L. et al. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons PLoS Genet., 5 (2009),p. e1000743
|
[34] |
Xing, H.L., Dong, L., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014),p. 327
|
[35] |
Xu, R., Li, H., Qin, R. et al. Rice, 7 (2014),p. 5
|
[36] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[37] |
Zhang, H., Zhang, J., Wei, P. et al. The CRISPR/Cas9 system produces specific and homozygous targete gene editing in rice in one gerneration Plant Biotech. J., 12 (2014),pp. 797-807
|
[38] |
Zhang, Y., Su, J., Duan, S. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes Plant Methods, 7 (2011),p. 30
|