| [1] |
Ang, Y.S., Tsai, S.Y., Lee, D.F. et al. Cell, 145 (2011),pp. 183-197
|
| [2] |
Anokye-Danso, F., Trivedi, C.M., Juhr, D. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency Cell Stem Cell, 8 (2011),pp. 376-388
|
| [3] |
Apostolou, E., Hochedlinger, K. Chromatin dynamics during cellular reprogramming Nature, 502 (2013),pp. 462-471
|
| [4] |
Araki, R., Hoki, Y., Uda, M. et al. Crucial role of c-Myc in the generation of induced pluripotent stem cells Stem Cells, 29 (2011),pp. 1362-1370
|
| [5] |
Bar-Nur, O., Russ, H.A., Efrat, S. et al. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells Cell Stem Cell, 9 (2011),pp. 17-23
|
| [6] |
Bock, C., Kiskinis, E., Verstappen, G. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines Cell, 144 (2011),pp. 439-452
|
| [7] |
Borooah, S., Phillips, M.J., Bilican, B. et al. Using human induced pluripotent stem cells to treat retinal disease Prog. Retin. Eye Res., 37 (2013),pp. 163-181
|
| [8] |
Brevini, T.A., Pennarossa, G., Rahman, M.M. et al. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation Stem Cell Rev., 10 (2014),pp. 633-642
|
| [9] |
Chen, J., Gao, Y., Huang, H. et al. The combination of Tet1 with Oct4 generates high-quality mouse-induced pluripotent stem cells Stem Cells, 33 (2015),pp. 686-698
|
| [10] |
Chen, J., Han, Q., Pei, D. EMT and MET as paradigms for cell fate switching J. Mol. Cell Biol., 4 (2012),pp. 66-69
|
| [11] |
Chen, J., Liu, H., Liu, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs Nat. Genet., 45 (2013),pp. 34-42
|
| [12] |
Chen, L.W., Kuang, F., Wei, L.C. et al. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease CNS Neurol. Disord. Drug Targets, 10 (2011),pp. 449-458
|
| [13] |
Chen, T., Dent, S.Y. Chromatin modifiers and remodellers: regulators of cellular differentiation Nat. Rev. Genet., 15 (2014),pp. 93-106
|
| [14] |
Christensen, B.C., Houseman, E.A., Marsit, C.J. et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context PLoS Genet., 5 (2009),p. e1000602
|
| [15] |
Clapier, C.R., Cairns, B.R. The biology of chromatin remodeling complexes Annu. Rev. Biochem., 78 (2009),pp. 273-304
|
| [16] |
Delgado-Olguin, P., Recillas-Targa, F. Chromatin structure of pluripotent stem cells and induced pluripotent stem cells Brief Funct. Genom., 10 (2011),pp. 37-49
|
| [17] |
Ding, X., Wang, X., Sontag, S. et al. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation Stem Cells Dev., 23 (2014),pp. 931-940
|
| [18] |
English, K., Wood, K.J. Immunogenicity of embryonic stem cell-derived progenitors after transplantation Curr. Opin. Organ Transplant., 16 (2011),pp. 90-95
|
| [19] |
Esteban, M.A., Wang, T., Qin, B. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells Cell Stem Cell, 6 (2010),pp. 71-79
|
| [20] |
Faravelli, I., Riboldi, G., Nizzardo, M. et al. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation Cell. Mol. Life Sci., 71 (2014),pp. 3257-3268
|
| [21] |
Federation, A.J., Bradner, J.E., Meissner, A. The use of small molecules in somatic-cell reprogramming Trends Cell Biol., 24 (2014),pp. 179-187
|
| [22] |
Galli, L.M., Munji, R.N., Chapman, S.C. et al. Frizzled10 mediates WNT1 and WNT3A signaling in the dorsal spinal cord of the developing chick embryo Dev. Dyn., 243 (2014),pp. 833-843
|
| [23] |
Hawkins, R.D., Hon, G.C., Lee, L.K. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells Cell Stem Cell, 6 (2010),pp. 479-491
|
| [24] |
He, J., Kallin, E.M., Tsukada, Y. et al. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b) Nat. Struct. Mol. Biol., 15 (2008),pp. 1169-1175
|
| [25] |
Heyn, H., Moran, S., Hernando-Herraez, I. et al. DNA methylation contributes to natural human variation Genome Res., 23 (2013),pp. 1363-1372
|
| [26] |
Hou, P., Li, Y., Zhang, X. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds Science, 341 (2013),pp. 651-654
|
| [27] |
Hu, K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation Stem Cells Dev., 23 (2014),pp. 1285-1300
|
| [28] |
Huangfu, D., Osafune, K., Maehr, R. et al. Nat. Biotechnol., 26 (2008),pp. 1269-1275
|
| [29] |
Huo, J.S., Zambidis, E.T. Pivots of pluripotency: the roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells Biochim. Biophys. Acta, 1830 (2013),pp. 2385-2394
|
| [30] |
Iglesias-Garcia, O., Pelacho, B., Prosper, F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling J. Mol. Cell. Cardiol., 62 (2013),pp. 43-50
|
| [31] |
Im, H., Park, C., Feng, Q. et al. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain J. Biol. Chem., 278 (2003),pp. 18346-18352
|
| [32] |
Jia, W., Chen, W., Kang, J. The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells Genom. Proteom. Bioinform., 11 (2013),pp. 275-283
|
| [33] |
Kang, R., Luo, Y., Zou, L. et al. Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers RSC Adv., 4 (2014),pp. 5734-5739
|
| [34] |
Kang, R., Zhou, Y., Tan, S. et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity Stem Cell Res. Ther., 6 (2015),p. 144
|
| [35] |
Keogh, M.C., Kurdistani, S.K., Morris, S.A. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex Cell, 123 (2005),pp. 593-605
|
| [36] |
Kim, K., Doi, A., Wen, B. et al. Epigenetic memory in induced pluripotent stem cells Nature, 467 (2010),pp. 285-290
|
| [37] |
Kim, K., Zhao, R., Doi, A. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells Nat. Biotechnol., 29 (2011),pp. 1117-1119
|
| [38] |
Kim, T.O., Park, J., Kang, M.J. et al. DNA hypermethylation of a selective gene panel as a risk marker for colon cancer in patients with ulcerative colitis Int. J. Mol. Med., 31 (2013),pp. 1255-1261
|
| [39] |
Koche, R.P., Smith, Z.D., Adli, M. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling Cell Stem Cell, 8 (2011),pp. 96-105
|
| [40] |
Lee, J., Xia, Y., Son, M.Y. et al. A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 12509-12513
|
| [41] |
Li, H., Collado, M., Villasante, A. et al. Nature, 460 (2009),pp. 1136-1139
|
| [42] |
Li, W., Zhou, H., Abujarour, R. et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2 Stem Cells, 27 (2009),pp. 2992-3000
|
| [43] |
Liang, G., He, J., Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming Nat. Cell Biol., 14 (2012),pp. 457-466
|
| [44] |
Liang, G., Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application Cell Stem Cell, 13 (2013),pp. 149-159
|
| [45] |
Lin, T., Ambasudhan, R., Yuan, X. et al. A chemical platform for improved induction of human iPSCs Nat. Methods, 6 (2009),pp. 805-808
|
| [46] |
Lister, R., Pelizzola, M., Kida, Y.S. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells Nature, 471 (2011),pp. 68-73
|
| [47] |
Loewer, S., Cabili, M.N., Guttman, M. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells Nat. Genet., 42 (2010),pp. 1113-1117
|
| [48] |
Ma, H., Morey, R., O'Neil, R.C. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms Nature, 511 (2014),pp. 177-183
|
| [49] |
Maherali, N., Sridharan, R., Xie, W. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution Cell Stem Cell, 1 (2007),pp. 55-70
|
| [50] |
Mali, P., Chou, B.K., Yen, J. et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes Stem Cells, 28 (2010),pp. 713-720
|
| [51] |
Mali, P., Ye, Z., Hommond, H.H. et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts Stem Cells, 26 (2008),pp. 1998-2005
|
| [52] |
Mattout, A., Biran, A., Meshorer, E. Global epigenetic changes during somatic cell reprogramming to iPS cells J. Mol. Cell Biol., 3 (2011),pp. 341-350
|
| [53] |
Minor, E.A., Court, B.L., Young, J.I. et al. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine J. Biol. Chem., 288 (2013),pp. 13669-13674
|
| [54] |
Montserrat, N., Nivet, E., Sancho-Martinez, I. et al. Reprogramming of human fibroblasts to pluripotency with lineage specifiers Cell Stem Cell, 13 (2013),pp. 341-350
|
| [55] |
Morris, S.A., Daley, G.Q. A blueprint for engineering cell fate: current technologies to reprogram cell identity Cell Res., 23 (2013),pp. 33-48
|
| [56] |
Narlikar, G.J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes Cell, 154 (2013),pp. 490-503
|
| [57] |
Nazor, K.L., Altun, G., Lynch, C. et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives Cell Stem Cell, 10 (2012),pp. 620-634
|
| [58] |
Nishino, K., Toyoda, M., Yamazaki-Inoue, M. et al. DNA methylation dynamics in human induced pluripotent stem cells over time PLoS Genet., 7 (2011),p. e1002085
|
| [59] |
Nishino, K., Toyoda, M., Yamazaki-Inoue, M. et al. Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts PLoS One, 5 (2010),p. e13017
|
| [60] |
Nissenbaum, J., Bar-Nur, O., Ben-David, E. et al. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells Stem Cell Rep., 1 (2013),pp. 509-517
|
| [61] |
Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline-competent induced pluripotent stem cells Nature, 448 (2007),pp. 313-317
|
| [62] |
Okita, K., Nakagawa, M., Hyenjong, H. et al. Generation of mouse induced pluripotent stem cells without viral vectors Science, 322 (2008),pp. 949-953
|
| [63] |
Onder, T.T., Kara, N., Cherry, A. et al. Chromatin-modifying enzymes as modulators of reprogramming Nature, 483 (2012),pp. 598-602
|
| [64] |
Pawlak, M., Jaenisch, R. Genes Dev., 25 (2011),pp. 1035-1040
|
| [65] |
Peitz, M., Jungverdorben, J., Brustle, O. Disease-specific iPS cell models in neuroscience Curr. Mol. Med., 13 (2013),pp. 832-841
|
| [66] |
Pennarossa, G., Maffei, S., Campagnol, M. et al. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine Stem Cell Rev., 10 (2014),pp. 31-43
|
| [67] |
Pennarossa, G., Maffei, S., Campagnol, M. et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 8948-8953
|
| [68] |
Polo, J.M., Anderssen, E., Walsh, R.M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells Cell, 151 (2012),pp. 1617-1632
|
| [69] |
Radzisheuskaya, A., Silva, J.C. Do all roads lead to Oct4? The emerging concepts of induced pluripotency Trends Cell Biol., 24 (2014),pp. 275-284
|
| [70] |
Rao, R.A., Dhele, N., Cheemadan, S. et al. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming Sci. Rep., 5 (2015),p. 8229
|
| [71] |
Rosa, A., Brivanlou, A.H. Regulatory non-coding RNAs in pluripotent stem cells Int. J. Mol. Sci., 14 (2013),pp. 14346-14373
|
| [72] |
Rouhani, F., Kumasaka, N., de Brito, M.C. et al. Genetic background drives transcriptional variation in human induced pluripotent stem cells PLoS Genet., 10 (2014),p. e1004432
|
| [73] |
Ruiz, S., Diep, D., Gore, A. et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 16196-16201
|
| [74] |
Sanchez-Freire, V., Lee, A.S., Hu, S. et al. Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells J. Am. Coll. Cardiol., 64 (2014),pp. 436-448
|
| [75] |
Schroeder, I.S. Potential of pluripotent stem cells for diabetes therapy Curr. Diab. Rep., 12 (2012),pp. 490-498
|
| [76] |
Shan, Z.Y., Wu, Y.S., Li, X. et al. Continuous passages accelerate the reprogramming of mouse induced pluripotent stem cells Cell Reprogram, 16 (2014),pp. 77-83
|
| [77] |
Shinagawa, T., Takagi, T., Tsukamoto, D. et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells Cell Stem Cell, 14 (2014),pp. 217-227
|
| [78] |
Soufi, A., Donahue, G., Zaret, K.S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome Cell, 151 (2012),pp. 994-1004
|
| [79] |
Stadtfeld, M., Apostolou, E., Ferrari, F. et al. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells Nat. Genet., 44 (2012),pp. 398-405
|
| [80] |
Stadtfeld, M., Nagaya, M., Utikal, J. et al. Induced pluripotent stem cells generated without viral integration Science, 322 (2008),pp. 945-949
|
| [81] |
Tachibana, M., Amato, P., Sparman, M. et al. Human embryonic stem cells derived by somatic cell nuclear transfer Cell, 153 (2013),pp. 1228-1238
|
| [82] |
Tahiliani, M., Koh, K.P., Shen, Y. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 Science, 324 (2009),pp. 930-935
|
| [83] |
Takahashi, K., Tanabe, K., Ohnuki, M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell, 131 (2007),pp. 861-872
|
| [84] |
Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell, 126 (2006),pp. 663-676
|
| [85] |
Taylor, S.M., Jones, P.A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine Cell, 17 (1979),pp. 771-779
|
| [86] |
Terasaki, H., Saitoh, T., Shiokawa, K. et al. Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT–beta-catenin–TCF signaling pathway Int. J. Mol. Med., 9 (2002),pp. 107-112
|
| [87] |
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S. et al. Embryonic stem cell lines derived from human blastocysts Science, 282 (1998),pp. 1145-1147
|
| [88] |
Unternaehrer, J.J., Daley, G.Q. Induced pluripotent stem cells for modelling human diseases Philos. Trans. R. Soc. Lond. B Biol. Sci., 366 (2011),pp. 2274-2285
|
| [89] |
Wang, T., Chen, K., Zeng, X. et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner Cell Stem Cell, 9 (2011),pp. 575-587
|
| [90] |
Wang, T., Wu, H., Li, Y. et al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency Nat. Cell Biol., 15 (2013),pp. 700-711
|
| [91] |
Wu, T., Liu, Y., Wen, D. et al. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs Cell Stem Cell, 15 (2014),pp. 281-294
|
| [92] |
Xu, H., Yi, B.A., Wu, H. et al. Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature Cell Res., 22 (2012),pp. 142-154
|
| [93] |
Yehezkel, S., Rebibo-Sabbah, A., Segev, Y. et al. Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives Epigenetics, 6 (2011),pp. 63-75
|
| [94] |
Yu, J., Vodyanik, M.A., Smuga-Otto, K. et al. Induced pluripotent stem cell lines derived from human somatic cells Science, 318 (2007),pp. 1917-1920
|
| [95] |
Zhang, L., Deng, L., Chen, F. et al. Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer Oncotarget, 5 (2014),pp. 10665-10677
|
| [96] |
Zhang, Z., Gao, Y., Gordon, A. et al. PLoS One, 6 (2011),p. e26592
|
| [97] |
Zhang, Z., Wu, W.S. Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster Stem Cells Dev., 22 (2013),pp. 2268-2277
|
| [98] |
Zhou, Y., Kim, J., Yuan, X. et al. Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells Circ. Res., 109 (2011),pp. 1067-1081
|
| [99] |
Zou, L., Luo, Y., Chen, M. et al. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds Sci. Rep., 3 (2013),p. 2243
|