[1] |
Adams, S.J., Aydin, I.T., Celebi, J.T. GAB2–a scaffolding protein in cancer Mol. Cancer Res., 10 (2012),pp. 1265-1270
|
[2] |
Albert, M.L., Kim, J.I., Birge, R.B. αvβ5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells Nat. Cell Biol., 2 (2000),pp. 899-905
|
[3] |
Barretina, J., Caponigro, G., Stransky, N. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity Nature, 483 (2012),pp. 603-607
|
[4] |
Bell, D., Berchuck, A., Birrer, M. et al. Integrated genomic analyses of ovarian carcinoma Nature, 474 (2011),pp. 609-615
|
[5] |
Bentires-Alj, M., Gil, S.G., Chan, R. et al. A role for the scaffolding adapter GAB2 in breast cancer Nat. Med., 12 (2006),pp. 114-121
|
[6] |
Birge, R.B., Kalodimos, C., Inagaki, F. et al. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling Cell Commun. Signal., 7 (2009),p. 13
|
[7] |
Boehm, J.S., Hahn, W.C. Towards systematic functional characterization of cancer genomes Nat. Rev. Genet., 12 (2011),pp. 487-498
|
[8] |
Brown, L.A., Kalloger, S.E., Miller, M.A. et al. Amplification of 11q13 in ovarian carcinoma Genes Chromosomes Cancer, 47 (2008),pp. 481-489
|
[9] |
Brummer, T., Schramek, D., Hayes, V.M. et al. Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein J. Biol. Chem., 281 (2006),pp. 626-637
|
[10] |
Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. et al. Integrin signalling adaptors: not only figurants in the cancer story Nat. Rev. Cancer, 10 (2010),pp. 858-870
|
[11] |
Cheung, H.W., Cowley, G.S., Weir, B.A. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 12372-12377
|
[12] |
Cheung, H.W., Du, J.Y., Boehm, J.S. et al. Cancer Discov., 1 (2011),pp. 608-625
|
[13] |
Clackson, T., Wells, J.A. A hot spot of binding energy in a hormone-receptor interface Science, 267 (1995),pp. 383-386
|
[14] |
Desnoyers, L.R., Pai, R., Ferrando, R.E. et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models Oncogene, 27 (2008),pp. 85-97
|
[15] |
Dunn, G.P., Cheung, H.W., Agarwalla, P.K. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 1102-1107
|
[16] |
Eswarakumar, V.P., Lax, I., Schlessinger, J. Cellular signaling by fibroblast growth factor receptors Cytokine Growth Factor Rev., 16 (2005),pp. 139-149
|
[17] |
Fathers, K.E., Rodrigues, S., Zuo, D. et al. CrkII transgene induces atypical mammary gland development and tumorigenesis Am. J. Pathol., 176 (2010),pp. 446-460
|
[18] |
Feller, S.M. Crk family adaptors-signalling complex formation and biological roles Oncogene, 20 (2001),pp. 6348-6371
|
[19] |
Feller, S.M., Knudsen, B., Hanafusa, H. Cellular proteins binding to the first Src homology 3 (SH3) domain of the proto-oncogene product c-Crk indicate Crk-specific signaling pathways Oncogene, 10 (1995),pp. 1465-1473
|
[20] |
Fischer, U., Keller, A., Leidinger, P. et al. A different view on DNA amplifications indicates frequent, highly complex, and stable amplicons on 12q13-21 in glioma Mol. Cancer Res., 6 (2008),pp. 576-584
|
[21] |
Gotoh, N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins Cancer Sci., 99 (2008),pp. 1319-1325
|
[22] |
Gotoh, N., Laks, S., Nakashima, M. et al. FRS2 family docking proteins with overlapping roles in activation of MAP kinase have distinct spatial-temporal patterns of expression of their transcripts FEBS Lett., 564 (2004),pp. 14-18
|
[23] |
Gotoh, N., Manova, K., Tanaka, S. et al. The docking protein FRS2α is an essential component of multiple fibroblast growth factor responses during early mouse development Mol. Cell. Biol., 25 (2005),pp. 4105-4116
|
[24] |
Gotoh, T., Hattori, S., Nakamura, S. et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G Mol. Cell. Biol., 15 (1995),pp. 6746-6753
|
[25] |
Gu, H., Neel, B.G. The “Gab” in signal transduction Trends Cell Biol., 13 (2003),pp. 122-130
|
[26] |
Gu, H., Pratt, J.C., Burakoff, S.J. et al. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation Mol. Cell, 2 (1998),pp. 729-740
|
[27] |
Guris, D.L., Fantes, J., Tara, D. et al. Nat. Genet., 27 (2001),pp. 293-298
|
[28] |
Heikkinen, L.S., Kazlauskas, A., Melen, K. et al. Avian and 1918 Spanish influenza a virus NS1 proteins bind to Crk/CrkL Src homology 3 domains to activate host cell signaling J. Biol. Chem., 283 (2008),pp. 5719-5727
|
[29] |
Horst, B., Gruvberger-Saal, S.K., Hopkins, B.D. et al. Gab2-mediated signaling promotes melanoma metastasis Am. J. Pathol., 174 (2009),pp. 1524-1533
|
[30] |
Johannessen, C.M., Johnson, L.A., Piccioni, F. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition Nature, 504 (2013),pp. 138-142
|
[31] |
Ke, Y., Wu, D., Princen, F. et al. Role of Gab2 in mammary tumorigenesis and metastasis Oncogene, 26 (2007),pp. 4951-4960
|
[32] |
Kim, Y.H., Kwei, K.A., Girard, L. et al. Oncogene, 29 (2010),pp. 1421-1430
|
[33] |
Kouhara, H., Hadari, Y.R., Spivak-Kroizman, T. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway Cell, 89 (1997),pp. 693-702
|
[34] |
Lamesch, P., Li, N., Milstein, S. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes Genomics, 89 (2007),pp. 307-315
|
[35] |
Lemmon, M.A., Schlessinger, J. Cell signaling by receptor tyrosine kinases Cell, 141 (2010),pp. 1117-1134
|
[36] |
Lock, L.S., Royal, I., Naujokas, M.A. et al. Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases J. Biol. Chem., 275 (2000),pp. 31536-31545
|
[37] |
Luo, B., Cheung, H.W., Subramanian, A. et al. Highly parallel identification of essential genes in cancer cells Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 20380-20385
|
[38] |
Luo, L.Y., Kim, E., Cheung, H.W. et al. The tyrosine kinase adaptor protein FRS2 is oncogenic and amplified in high-grade serous ovarian cancer Mol. Cancer Res., 13 (2015),pp. 502-509
|
[39] |
Miller, C.T., Chen, G., Gharib, T.G. et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas Oncogene, 22 (2003),pp. 7950-7957
|
[40] |
Moreira, I.S., Fernandes, P.A., Ramos, M.J. Hot spots–a review of the protein-protein interface determinant amino-acid residues Proteins, 68 (2007),pp. 803-812
|
[41] |
Muller, Y.A., Li, B., Christinger, H.W. et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 7192-7197
|
[42] |
Nichols, G.L., Raines, M.A., Vera, J.C. et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells Blood, 84 (1994),pp. 2912-2918
|
[43] |
Nishida, K., Hirano, T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors Cancer Sci., 94 (2003),pp. 1029-1033
|
[44] |
Nishihara, H., Tanaka, S., Tsuda, M. et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers Cancer Lett., 180 (2002),pp. 55-61
|
[45] |
Oda, T., Heaney, C., Hagopian, J.R. et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia J. Biol. Chem., 269 (1994),pp. 22925-22928
|
[46] |
Oltersdorf, T., Elmore, S.W., Shoemaker, A.R. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours Nature, 435 (2005),pp. 677-681
|
[47] |
Park, J., Hu, Y., Murthy, T.V. et al. Building a human kinase gene repository: bioinformatics, molecular cloning, and functional validation Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 8114-8119
|
[48] |
Pawson, T., Scott, J.D. Signaling through scaffold, anchoring, and adaptor proteins Science, 278 (1997),pp. 2075-2080
|
[49] |
Sakai, R., Nakamoto, T., Ozawa, K. et al. Characterization of the kinase activity essential for tyrosine phosphorylation of p130Cas in fibroblasts Oncogene, 14 (1997),pp. 1419-1426
|
[50] |
Sato, T., Gotoh, N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment Expert Opin. Ther. Targets, 13 (2009),pp. 689-700
|
[51] |
Sattler, M., Salgia, R., Shrikhande, G. et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120 (CBL) J. Biol. Chem., 272 (1997),pp. 10248-10253
|
[52] |
Schonherr, C., Yang, H.L., Vigny, M. et al. Oncogene, 29 (2010),pp. 2817-2830
|
[53] |
Schwab, M. Amplification of oncogenes in human cancer cells BioEssays, 20 (1998),pp. 473-479
|
[54] |
Senechal, K., Halpern, J., Sawyers, C.L. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene J. Biol. Chem., 271 (1996),pp. 23255-23261
|
[55] |
Seo, J.H., Wood, L.J., Agarwal, A. et al. A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors Cancer Res., 70 (2010),pp. 7325-7335
|
[56] |
Shao, D.D., Xue, W., Krall, E.B. et al. KRAS and YAP1 converge to regulate EMT and tumor survival Cell, 158 (2014),pp. 171-184
|
[57] |
Takino, T., Nakada, M., Miyamori, H. et al. CrkI adapter protein modulates cell migration and invasion in glioblastoma Cancer Res., 63 (2003),pp. 2335-2337
|
[58] |
Tanaka, S., Morishita, T., Hashimoto, Y. et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 3443-3447
|
[59] |
Thanos, C.D., DeLano, W.L., Wells, J.A. Hot-spot mimicry of a cytokine receptor by a small molecule Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 15422-15427
|
[60] |
Wang, X.K., Asmann, Y.W., Erickson-Johnson, M.R. et al. High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma Genes Chromosomes Cancer, 50 (2011),pp. 849-858
|
[61] |
Wang, Y., Sheng, Q., Spillman, M.A. et al. Oncogene, 31 (2012),pp. 2512-2520
|
[62] |
Weidow, C.L., Black, D.S., Bliska, J.B. et al. CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells Cell. Microbiol., 2 (2000),pp. 549-560
|
[63] |
Weir, B.A., Woo, M.S., Getz, G. et al. Characterizing the cancer genome in lung adenocarcinoma Nature, 450 (2007),pp. 893-898
|
[64] |
Wells, J.A., McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces Nature, 450 (2007),pp. 1001-1009
|
[65] |
Yan, K.S., Kuti, M., Yan, S. et al. FRS2 PTB domain conformation regulates interactions with divergent neurotrophic receptors J. Biol. Chem., 277 (2002),pp. 17088-17094
|
[66] |
Yang, X., Boehm, J.S., Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs Nat. Methods, 8 (2011),pp. 659-661
|
[67] |
Zhang, K., Chu, K., Wu, X. et al. Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma Cancer Res., 73 (2013),pp. 1298-1307
|