5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 12
Dec.  2015
Turn off MathJax
Article Contents

Characterization of a Putative New Semi-Dominant Reduced Height Gene, Rht_NM9, in Wheat (Triticum aestivum L.)

doi: 10.1016/j.jgg.2015.08.007
More Information
  • Corresponding author: E-mail address: caoaz@njau.edu.cn (Aizhong Cao)
  • Received Date: 2015-07-13
  • Accepted Date: 2015-08-13
  • Rev Recd Date: 2015-08-11
  • Available Online: 2015-11-03
  • Publish Date: 2015-12-20
  • Plant height is an important agronomic trait in cereal crops, and can affect both plant architecture and grain yield. New dwarfing genes are required for improving the genetic diversity of wheat. In this study, a novel dwarf mutant, NM9, was created by treating seeds of the wheat variety NAU9918 with ethyl methanesulfonate (EMS). NM9 showed obvious phenotypic changes, which were distinct from those caused by other dwarfing genes, especially the reduced plant height, increased effective tiller number, and elongated spike and grain length. The reduced plant height in NM9 was attributable to a semi-dominant dwarfing gene Rht_NM9, which was flanked by two closely linked SNP markers, SNP34 and SNP41, covering an 8.86-Mb region on the chromosome arm 2AS. The results of gibberellic acid (GA) sensitivity evaluation, comparative genomics analysis and allelism test indicated that Rht_NM9 was neither allelic to Rht7 and Rht21 nor homoeoallelic to Rht8, so Rht_NM9 was proposed to be a new dwarfing locus on the homoeologous group 2 chromosomes of wheat. Rht_NM9 has a negative effect on plant height and positive effects on effective tiller number and grain size, thus, Rht_NM9 could be used for elucidating the mechanisms underlying plant architecture and grain development.
  • These two authors contributed equally to this work.
  • loading
  • [1]
    Abràmoff, M.D., Magalhães, P.J., Ram, S.J. Image processing with ImageJ Biophotonics International, 11 (2004),pp. 36-42
    [2]
    Arite, T., Iwata, H., Ohshima, K. et al. Plant J., 51 (2007),pp. 1019-1029
    [3]
    Arite, T., Umehara, M., Ishikawa, S. et al. Plant Cell Physiol., 50 (2009),pp. 1416-1424
    [4]
    Bai, M.Y., Zhang, L.Y., Gampala, S.S. et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 13839-13844
    [5]
    Börner, A., Röder, M., Korzun, V. Theor. Appl. Genet., 95 (1997),pp. 1133-1137
    [6]
    Chen, L., Phillips, A.L., Condon, A.G. et al. PLoS One, 8 (2013),p. e62285
    [7]
    Chen, S.L., Gao, R.H., Wang, H.Y. et al. Euphytica, 203 (2014),pp. 583-594
    [8]
    Dai, C., Xue, H.W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling EMBO J., 29 (2010),pp. 1916-1927
    [9]
    Daoura, B.G., Chen, L., Du, Y. et al. Field Crop. Res., 156 (2014),pp. 22-29
    [10]
    Duan, J.L., Wu, J.L., Liu, Y. et al. Funct. Integr. Genomics, 12 (2012),pp. 489-500
    [11]
    Ellis, M., Spielmeyer, W., Gale, K. et al. Theor. Appl. Genet., 105 (2002),pp. 1038-1042
    [12]
    Ellis, M.H., Rebetzke, G.J., Chandler, P. et al. The effect of different height reducing genes on the early growth of wheat Funct. Plant Biol., 31 (2004),pp. 583-589
    [13]
    Gale, M.D., Youssefian, S., Russell, G.
    [14]
    Gasperini, D., Greenland, A., Hedden, P. et al. J. Exp. Bot., 63 (2012),pp. 4419-4436
    [15]
    Gaude, N., Bortfeld, S., Duensing, N. et al. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development Plant J., 69 (2012),pp. 510-528
    [16]
    Han, Y., Jiang, J., Liu, H. et al. Plant Sci., 169 (2005),pp. 487-495
    [17]
    Hong, Z., Ueguchi-Tanaka, M., Fujioka, S. et al. Plant Cell, 17 (2005),pp. 2243-2254
    [18]
    Hong, Z., Ueguchi-Tanaka, M., Umemura, K. et al. Plant Cell, 15 (2003),pp. 2900-2910
    [19]
    Ishikawa, G., Yonemaru, J., Saito, M. et al. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes BMC Genomics, 8 (2007),p. 135
    [20]
    Ishikawa, S., Maekawa, M., Arite, T. et al. Suppression of tiller bud activity in tillering dwarf mutants of rice Plant Cell Physiol., 46 (2005),pp. 79-86
    [21]
    Ito, Y., Kurata, N. Identification and characterization of cytokinin-signalling gene families in rice Gene, 382 (2006),pp. 57-65
    [22]
    Jiang, Y., Zhao, Y., Rodemann, B. et al. Heredity, 114 (2014),pp. 318-326
    [23]
    King, R., Gale, M., Quarrie, S. Effects of Norin 10 and Tom Thumb dwarfing genes on morphology, physiology and abscisic acid production in wheat Ann. Bot., 51 (1983),pp. 201-208
    [24]
    Konzak, C.
    [25]
    Korzun, V., Röder, M., Ganal, M. et al. Theor. Appl. Genet., 96 (1998),pp. 1104-1109
    [26]
    Lin, H., Wang, R.X., Qian, Q. et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth Plant Cell, 21 (2009),pp. 1512-1525
    [27]
    Liu, H.L., Yin, Z.J., Xiao, L. et al. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed J. Exp. Bot., 63 (2012),pp. 3279-3287
    [28]
    Lo, S.F., Yang, S.Y., Chen, K.T. et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice Plant Cell, 20 (2008),pp. 2603-2618
    [29]
    Margis-Pinheiro, M., Zhou, X.R., Zhu, Q.H. et al. Plant Cell Rep., 23 (2005),pp. 819-833
    [30]
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J. et al.
    [31]
    Minolta, C.
    [32]
    Mori, M., Nomura, T., Ooka, H. et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis Plant Physiol., 130 (2002),pp. 1152-1161
    [33]
    Murray, M., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucleic Acids Res., 8 (1980),pp. 4321-4326
    [34]
    Nakamura, A., Fukuda, A., Sakai, S. et al. Plant Cell Physiol., 47 (2006),pp. 32-42
    [35]
    Norusis, M.
    [36]
    Peng, J.R., Richards, D.E., Hartley, N.M. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators Nature, 400 (1999),pp. 256-261
    [37]
    Petersen, S., Lyerly, J.H., Worthington, M.L. et al. Theor. Appl. Genet., 128 (2014),pp. 303-312
    [38]
    Röder, M.S., Korzun, V., Wendehake, K. et al. A microsatellite map of wheat Genetics, 149 (1998),pp. 2007-2023
    [39]
    Röder, M.S., Korzun, V., Gill, B.S. et al. The physical mapping of microsatellite markers in wheat Genome, 41 (1998),pp. 278-283
    [40]
    Rebetzke, G., Richards, R. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat Crop Pasture Sci., 51 (2000),pp. 235-246
    [41]
    Sato, Y., Sentoku, N., Miura, Y. et al. EMBO J., 18 (1999),pp. 992-1002
    [42]
    Sazuka, T., Kamiya, N., Nishimura, T. et al. Plant J., 60 (2009),pp. 227-241
    [43]
    Sial, M.A., Arain, M.A., Javed, M.A. et al. Asian J. Plant Sci., 1 (2002),pp. 254-256
    [44]
    Somers, D.J., Isaac, P., Edwards, K. Theor. Appl. Genet., 109 (2004),pp. 1105-1114
    [45]
    Tanabe, S., Ashikari, M., Fujioka, S. et al. Plant Cell, 17 (2005),pp. 776-790
    [46]
    Tong, H.N., Jin, Y., Liu, W.B. et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice Plant J., 58 (2009),pp. 803-816
    [47]
    Van Ooijen, J.
    [48]
    Wang, S.C., Wong, D., Forrest, K. et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array Plant Biotechnol. J., 12 (2014),pp. 787-796
    [49]
    Worland, A., Korzun, V., Röder, M. et al. Theor. Appl. Genet., 96 (1998),pp. 1110-1120
    [50]
    Worland, A., Law, C., Shakoor, A. The genetical analysis of an induced height mutant in wheat Heredity, 45 (1980),pp. 61-71
    [51]
    Wu, J., Kong, X.Y., Wan, J.M. et al. Plant Physiol., 157 (2011),pp. 2120-2130
    [52]
    Wu, T., Shen, Y., Zheng, M. et al. Plant Cell Rep., 33 (2014),pp. 235-244
    [53]
    Xu, J., Xiong, W.T., Cao, B.B. et al. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice Planta, 238 (2013),pp. 643-655
    [54]
    Yaish, M.W., El-Kereamy, A., Zhu, T. et al. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice PLoS Genet., 6 (2010),p. e1001098
    [55]
    Yamamuro, C., Ihara, Y., Wu, X. et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint Plant Cell, 12 (2000),pp. 1591-1605
    [56]
    Yang, T.Z., Zhang, X.K., Liu, H.W. et al. Acta Univ. Agr. Boreali-Occidentalis Sin., 21 (1993),pp. 13-17
    [57]
    Yang, X., Huang, J., Jiang, Y. et al. Mol. Biol. Rep., 36 (2009),pp. 281-287
    [58]
    Zanke, C., Ling, J., Plieske, J. et al. Genetic architecture of main effect QTL for heading date in European winter wheat Front. Plant Sci., 5 (2014)
    [59]
    Zhang, X.K., Yang, S.J., Zhou, Y. et al. Euphytica, 152 (2006),pp. 109-116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return