[1] |
Arlt, A., Müerköster, S.S., Schäfer, H. Targeting apoptosis pathways in pancreatic cancer Cancer Lett., 332 (2013),pp. 346-358
|
[2] |
Bai, S., Cao, X. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling J. Biol. Chem., 277 (2002),pp. 4176-4182
|
[3] |
Bleeker, F.E., Felicioni, L., Buttitta, F. et al. AKT1 (E17K) in human solid tumours Oncogene, 27 (2008),pp. 5648-5650
|
[4] |
Brabletz, T., Jung, A., Spaderna, S. et al. Opinion: migrating cancer stem cells–an integrated concept of malignant tumour progression Nat. Rev. Cancer, 5 (2005),pp. 744-749
|
[5] |
Broderick, J.A., Zamore, P.D. MicroRNA therapeutics Gene Ther., 18 (2011),pp. 1104-1110
|
[6] |
Burk, U., Schubert, J., Wellner, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells EMBO Rep., 9 (2008),pp. 582-589
|
[7] |
Cai, B., An, Y., Lv, N. et al. Oncol. Rep., 29 (2013),pp. 1769-1776
|
[8] |
Chan, S.L., Chan, S.T., Chan, E.H. et al. Systemic treatment for inoperable pancreatic adenocarcinoma: review and update Chin. J. Cancer, 33 (2014),pp. 267-276
|
[9] |
Chang, T.C., Wentzel, E.A., Kent, O.A. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis Mol. Cell, 26 (2007),pp. 745-752
|
[10] |
Chen, W.Y., Liu, W.J., Zhao, Y.P. et al. Induction, modulation and potential targets of miR-210 in pancreatic cancer cells Hepatobiliary Pancreat. Dis. Int., 11 (2012),pp. 319-324
|
[11] |
Chen, Z., Chen, L.Y., Dai, H.Y. et al. miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression J. Cell. Biochem., 113 (2012),pp. 3229-3235
|
[12] |
Croce, C.M., Calin, G.A. miRNAs, cancer, and stem cell division Cell, 122 (2005),pp. 6-7
|
[13] |
Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
|
[14] |
Deng, J., He, M., Chen, L. et al. The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival PLoS One, 8 (2013),p. e76450
|
[15] |
Ding, X.M. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT) Chin. J. Cancer, 33 (2014),pp. 140-147
|
[16] |
Dong, J., Zhao, Y.P., Zhou, L. et al. Arch. Med. Res., 42 (2011),pp. 8-14
|
[17] |
Dosch, J.S., Pasca di Magliano, M., Simeone, D.M. Pancreatic cancer and hedgehog pathway signaling: new insights Pancreatology, 10 (2010),pp. 151-157
|
[18] |
Druz, A., Chen, Y.C., Guha, R. et al. Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines RNA Biol., 10 (2013),pp. 287-300
|
[19] |
Farhana, L., Dawson, M.I., Murshed, F. et al. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R PLoS One, 8 (2013),p. e61015
|
[20] |
Frampton, A.E., Krell, J., Jacob, J. et al. Loss of miR-126 is crucial to pancreatic cancer progression Expert Rev. Anticancer Ther., 7 (2012),pp. 881-884
|
[21] |
Franke, T.F. PI3K/Akt: getting it right matters Oncogene, 27 (2008),pp. 6473-6488
|
[22] |
Fulda, S. Evasion of apoptosis as a cellular stress response in cancer Int. J. Cell Biol., 2010 (2010),p. 370835
|
[23] |
Gironella, M., Seux, M., Xie, M.J. et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16170-16175
|
[24] |
Gregory, P.A., Bert, A.G., Paterson, E.L. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 Nat. Cell Biol., 10 (2008),pp. 593-601
|
[25] |
Greither, T., Grochola, L.F., Udelnow, A. et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival Int. J. Cancer, 126 (2010),pp. 73-80
|
[26] |
Guo, R., Wang, Y., Shi, W.Y. et al. MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway Molecules, 17 (2012),pp. 14733-14747
|
[27] |
Hamada, S., Satoh, K., Fujibuchi, W. et al. Mol. Cancer Res., 10 (2012),pp. 3-10
|
[28] |
Hamada, S., Masamune, A., Miura, S. et al. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX Cell. Signal., 26 (2014),pp. 179-185
|
[29] |
Hao, J., Zhang, S., Zhou, Y. et al. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer FEBS Lett., 585 (2011),pp. 207-213
|
[30] |
Hao, J., Zhang, S., Zhou, Y. et al. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer Biochem. Biophys. Res. Commun., 406 (2011),pp. 552-557
|
[31] |
Harazono, Y., Muramatsu, T., Endo, H. et al. miR-655 is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2 PLoS One, 8 (2013),p. e62757
|
[32] |
Hata, A., Davis, B.N. Control of microRNA biogenesis by TGFbeta signaling pathway–A novel role of Smads in the nucleus Cytokine Growth Factor Rev., 20 (2009),pp. 517-521
|
[33] |
He, D., Miao, H., Xu, Y. et al. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival PLoS One, 9 (2014),p. e112930
|
[34] |
Hidalgo, M. Pancreatic cancer N. Engl. J. Med., 362 (2010),pp. 1605-1617
|
[35] |
Hu, Y., Ou, Y., Wu, K. et al. MiR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway Tumour Biol., 33 (2012),pp. 1863-1870
|
[36] |
Huang, F., Tang, J., Zhuang, X. et al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha PLoS One, 9 (2014),p. e87897
|
[37] |
Huang, T., Alvarez, A., Hu, B. et al. Noncoding RNAs in cancer and cancer stem cells Chin. J. Cancer, 32 (2013),pp. 582-593
|
[38] |
Hui, C.C., Angers, S. Gli proteins in development and disease Annu. Rev. Cell Dev. Biol., 27 (2011),pp. 513-537
|
[39] |
Ivanovska, I., Ball, A.S., Diaz, R.L. et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression Mol. Cell. Biol., 28 (2008),pp. 2167-2174
|
[40] |
Izumchenko, E., Chang, X., Michailidi, C. et al. The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors Cancer Res., 74 (2014),pp. 3995-4005
|
[41] |
Jiang, J., Yu, C., Chen, M. et al. Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype Oncotarget, 6 (2015),pp. 2767-2778
|
[42] |
Jiao, L.R., Frampton, A.E., Jacob, J. et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors PLoS One, 7 (2012),p. e32068
|
[43] |
Jones, S., Zhang, X., Parsons, D.W. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses Science, 321 (2008),pp. 1801-1806
|
[44] |
Kapinas, K., Kessler, C., Ricks, T. et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop J. Biol. Chem., 285 (2010),pp. 25221-25231
|
[45] |
Kang, M.H., Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy Clin. Cancer Res., 15 (2009),pp. 1126-1132
|
[46] |
Keklikoglou, I., Hosaka, K., Bender, C. et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes Oncogene (2014),pp. 1-12
|
[47] |
Kent, O.A., Chivukula, R.R., Mullendore, M. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway Genes Dev., 24 (2010),pp. 2754-2759
|
[48] |
Kong, X., Li, L., Li, Z. et al. Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer Cancer Res., 73 (2013),pp. 3987-3996
|
[49] |
Lahdaoui, F., Delpu, Y., Vincent, A. et al. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer Oncogene, 34 (2015),pp. 780-788
|
[50] |
Lee, K.H., Lotterman, C., Karikari, C. et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer Pancreatology, 9 (2009),pp. 293-301
|
[51] |
Li, C., Heidt, D.G., Dalerba, P. et al. Identification of pancreatic cancer stem cells Cancer Res., 67 (2007),pp. 1030-1037
|
[52] |
Li, L., Li, Z., Kong, X. et al. Gastroenterology, 147 (2014),pp. 485-497
|
[53] |
Li, Y., Zhang, D., Chen, C. et al. MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1 Mol. Biol. Cell, 23 (2012),pp. 1423-1434
|
[54] |
Liang, X., Zeng, J., Wang, L. et al. Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212 PLoS One, 8 (2013),p. e69784
|
[55] |
Liffers, S.T., Munding, J.B., Vogt, M. et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B Lab. Invest., 91 (2011),pp. 1472-1479
|
[56] |
Listing, H., Mardin, W.A., Wohlfromm, S. et al. MiR-23a/-24-induced gene silencing results in mesothelial cell integration of pancreatic cancer Br. J. Cancer, 112 (2015),pp. 131-139
|
[57] |
Liu, M., Du, Y., Gao, J. et al. Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells Pancreas, 42 (2013),pp. 1169-1181
|
[58] |
Liu, M., Zhang, X., Hu, C.F. et al. MicroRNA-mRNA functional pairs for cisplatin resistance in ovarian cancer cells Chin. J. Cancer, 33 (2014),pp. 285-294
|
[59] |
Lodygin, D., Tarasov, V., Epanchintsev, A. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer Cell Cycle, 7 (2008),pp. 2591-2600
|
[60] |
Lu, Z., Li, Y., Takwi, A. et al. miR-301a as an NF-κB activator in pancreatic cancer cells EMBO J., 30 (2011),pp. 57-67
|
[61] |
di Magliano, M.P., Logsdon, C.D. Roles for KRAS in pancreatic tumor development and progression Gastroenterology, 144 (2013),pp. 1220-1229
|
[62] |
Ma, C., Nong, K., Wu, B. et al. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1 J. Exp. Clin. Cancer Res., 33 (2014),p. 54
|
[63] |
Malumbres, M., Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm Nat. Rev. Cancer, 9 (2009),pp. 153-166
|
[64] |
Meng, X., Wu, J., Pan, C. et al. Gastroenterology, 145 (2013),pp. 426-436
|
[65] |
Moon, R.T., Bowerman, B., Boutros, M. et al. The promise and perils of Wnt signaling through beta-catenin Science, 296 (2002),pp. 1644-1646
|
[66] |
, Cano, D.A., Sekine, S., Wang, S.C. et al. Beta-catenin blocks Kras- dependent reprogramming of acini into pancreatic cancer precursor lesions in mice J. Clin. Invest., 120 (2010),pp. 508-520
|
[67] |
, Wang, S.C., Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma Nat. Rev. Cancer, 10 (2010),pp. 683-695
|
[68] |
Morton, J.P., Timpson, P., Karim, S.A. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 246-251
|
[69] |
Mu, Y., Gudey, S.K., Landström, M. Non-Smad signaling pathways Cell Tissue Res., 347 (2012),pp. 11-20
|
[70] |
Mueller, M.T., Hermann, P.C., Witthauer, J. et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer Gastroenterology, 137 (2009),pp. 1102-1113
|
[71] |
Musgrove, E.A., Caldon, C.E., Barraclough, J. et al. Cyclin D as a therapeutic target in cancer Nat. Rev. Cancer, 11 (2011),pp. 558-572
|
[72] |
Nagano, H., Tomimaru, Y., Eguchi, H. et al. MicroRNA-29a induces resistance to gemcitabine through the Wnt/β-catenin signaling pathway in pancreatic cancer cells Int. J. Oncol., 43 (2013),pp. 1066-1072
|
[73] |
Oettle, H., Post, S., Neuhaus, P. et al. JAMA, 297 (2007),pp. 267-277
|
[74] |
Olive, K.P., Jacobetz, M.A., Davidson, C.J. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer Science, 324 (2009),pp. 1457-1461
|
[75] |
Ozdamar, B., Bose, R., Barrios-Rodiles, M. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity Science, 307 (2005),pp. 1603-1609
|
[76] |
Padua, D., Massagué, J. Roles of TGFbeta in metastasis Cell Res., 19 (2009),pp. 89-102
|
[77] |
Pan, Y., Bai, C.B., Joyner, A.L. et al. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation Mol. Cell. Biol., 26 (2006),pp. 3365-3377
|
[78] |
Park, J.K., Henry, J.C., Jiang, J. et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor Biochem. Biophys. Res. Commun., 406 (2011),pp. 518-523
|
[79] |
Peifer, M., Polakis, P. Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus Science, 287 (2000),pp. 1606-1609
|
[80] |
Prakash, N., Wurst, W. Neurodegener. Dis., 4 (2007),pp. 333-338
|
[81] |
Pylayeva-Gupta, Y., Grabocka, E., Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web Nat. Rev. Cancer, 11 (2011),pp. 761-774
|
[82] |
Reya, T., Clevers, H. Wnt signalling in stem cells and cancer Nature, 434 (2005),pp. 843-850
|
[83] |
Ristorcelli, E., Beraud, E., Verrando, P. et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells FASEB J., 22 (2008),pp. 3358-3369
|
[84] |
Rivera, F., López-Tarruella, S., Vega-Villegas, M.E. et al. Treatment of advanced pancreatic cancer: from gemcitabine single agent to combinations and targeted therapy Cancer Treat. Rev., 35 (2009),pp. 335-339
|
[85] |
Rosty, C., Goggins, M. Early detection of pancreatic carcinoma Hematol. Oncol. Clin. North Am., 16 (2002),pp. 37-52
|
[86] |
Rubin, L.L., de Sauvage, F.J. Targeting the Hedgehog pathway in cancer Nat. Rev. Drug Discov., 5 (2006),pp. 1026-1033
|
[87] |
Samavarchi-Tehrani, P., Golipour, A., David, L. et al. Functional genomics reveals a BMP-driven mesenchymal-toepithelial transition in the initiation of somatic cell reprogramming Cell Stem Cell, 7 (2010),pp. 64-77
|
[88] |
Scapoli, L., Palmieri, A., Lo, M.L. et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression Int. J. Immunopathol. Pharmacol., 23 (2010),pp. 1229-1234
|
[89] |
Shen, J., Wan, R., Hu, G. et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro Pancreatology, 12 (2012),pp. 91-99
|
[90] |
Shi, W., Sun, C., He, B. et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor J. Cell Biol., 164 (2004),pp. 291-300
|
[91] |
Siegel, R., Ma, J., Zou, Z. et al. Cancer statistics, 2014 CA Cancer J. Clin., 64 (2014),pp. 9-29
|
[92] |
Singh, P., Srinivasan, R., Wig, J.D. Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment Pancreas, 40 (2011),pp. 644-652
|
[93] |
Singh, P., Srinivasan, R., Wig, J.D. et al. A study of Smad4, Smad6 and Smad7 in surgically resected samples of pancreatic ductal adenocarcinoma and their correlation with clinicopathological parameters and patient survival BMC. Res. Notes, 4 (2011),pp. 560-564
|
[94] |
Slack, F.J., Weidhaas, J.B. MicroRNA in cancer prognosis N. Engl. J. Med., 359 (2008),pp. 2720-2722
|
[95] |
Song, S.D., Zhou, J., Zhou, J. et al. MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma Oncol. Lett., 6 (2013),pp. 953-959
|
[96] |
Spaderna, S., Schmalhofer, O., Hlubek, F. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer Gastroenterology, 131 (2006),pp. 830-840
|
[97] |
Spaderna, S., Schmalhofer, O., Wahlbuhl, M. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer Cancer Res., 68 (2008),pp. 537-544
|
[98] |
Sun, A., Bagella, L., Tutton, S. et al. From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway J. Cell. Biochem., 102 (2007),pp. 1400-1404
|
[99] |
Sun, Y., Guo, F., Bagnoli, M. et al. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer Chin. J. Cancer, 34 (2015),pp. 28-40
|
[100] |
Sun, Y., Zhang, T., Wang, C. et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2 PLoS One, 10 (2015),p. e0119783
|
[101] |
Takiuchi, D., Eguchi, H., Nagano, H. et al. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells Pancreatology, 13 (2013),pp. 517-523
|
[102] |
Thayer, S.P., di Magliano, M.P., Heiser, P.W. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis Nature, 425 (2003),pp. 851-856
|
[103] |
Tian, M., Neil, J.R., Schiemann, W.P. Transforming growth factor-β and the hallmarks of cancer Cell. Signal., 23 (2011),pp. 951-962
|
[104] |
Torrisani, J., Bournet, B., du Rieu, M.C. et al. Hum. Gene Ther., 20 (2009),pp. 831-844
|
[105] |
Tsuda, N., Ishiyama, S., Li, Y. et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells Clin. Cancer Res., 12 (2006),pp. 6557-6564
|
[106] |
van den Brink, G.R. Hedgehog signaling in development and homeostasis of the gastrointestinal tract Physiol. Rev., 87 (2007),pp. 1343-1375
|
[107] |
Vousden, K.H., Prives, C. Blinded by the light: the growing complexity of p53 Cell, 137 (2009),pp. 413-431
|
[108] |
Walter, B.A., Valera, V.A., Pinto, P.A. et al. Comprehensive microRNA profiling of prostate cancer J. Cancer, 4 (2013),pp. 350-357
|
[109] |
Wang, P., Fan, J., Chen, Z. et al. Ann. Surg. Oncol., 16 (2009),pp. 826-835
|
[110] |
Wang, R.A., Li, Z.S., Yan, Q.G. et al. Resistance to apoptosis should not be taken as a hallmark of cancer Chin. J. Cancer, 33 (2014),pp. 47-50
|
[111] |
Wang, S., Chen, X., Tang, M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2 Oncol. Rep., 32 (2014),pp. 2824-2830
|
[112] |
Watanabe, S., Ueda, Y., Akaboshi, S. et al. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells Am. J. Pathol., 174 (2009),pp. 854-868
|
[113] |
Wei, D., Wang, L., Kanai, M. et al. KLF4α up-regulation promotes cell cycle progression and reduces survival time of patients with pancreatic cancer Gastroenterology, 139 (2010),pp. 2135-2145
|
[114] |
Wong, H.H., Lemoine, N.R. Pancreatic cancer: molecular pathogenesis and new therapeutic targets Nat. Rev. Gastroenterol. Hepatol., 6 (2009),pp. 412-422
|
[115] |
Xu, J.W., Wang, T.X., You, L. et al. Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer PLoS One, 9 (2014),p. e92847
|
[116] |
Yan, H.J., Liu, W.S., Sun, W.H. et al. Dig. Dis. Sci., 57 (2012),pp. 3160-3167
|
[117] |
Youle, R.J., Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 47-59
|
[118] |
Yu, S., Lu, Z., Liu, C. et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer Cancer Res., 70 (2010),pp. 6015-6025
|
[119] |
Zang, W., Wang, Y., Wang, T. et al. miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer Mol. Cancer, 14 (2015),p. 37
|
[120] |
Zeng, J.P., Fang, M., Wang, L.X. et al. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2 J. Cell. Biochem., 114 (2013),pp. 2666-2672
|
[121] |
Zhang, B., Ma, J.X. Wnt pathway antagonists and angiogenesis Protein Cell, 1 (2010),pp. 898-906
|
[122] |
Zhang, J., Jia, Z., Li, Q. et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors Cancer, 109 (2007),pp. 1478-1486
|
[123] |
Zhang, R., Li, M., Zang, W. et al. MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2 Tumor Biol., 35 (2014),pp. 837-844
|
[124] |
Zhang, X.J., Ye, H., Zeng, C.W. et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer J. Hematol. Oncol., 3 (2010),p. 46
|
[125] |
Zhao, G., Zhang, J.G., Shi, Y. et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3 PLoS One, 8 (2013),p. e73803
|
[126] |
Zhao, G., Zhang, J.G., Liu, Y. et al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1 Mol. Cancer Ther., 12 (2013),pp. 83-93
|
[127] |
Zhao, W.G., Yu, S.N., Lu, Z.H. et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS Carcinogenesis, 31 (2010),pp. 1726-1733
|
[128] |
Zhou, J., Song, S., He, S. et al. MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway Int. J. Mol. Med., 33 (2014),pp. 950-956
|
[129] |
Zhou, L., Zhang, W.G., Wang, D.S. et al. MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1 Oncol. Rep., 32 (2014),pp. 1734-1740
|
[130] |
Zhu, Z., Xu, Y., Zhao, J. et al. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway Br. J. Cancer, 112 (2015),pp. 1367-1375
|