[1] |
Al-Hakim, A., Escribano-Diaz, C., Landry, M.C. et al. The ubiquitous role of ubiquitin in the DNA damage response DNA Repair (Amst), 9 (2010),pp. 1229-1240
|
[2] |
Celeste, A., Petersen, S., Romanienko, P.J. et al. Genomic instability in mice lacking histone H2AX Science, 296 (2002),pp. 922-927
|
[3] |
Chapman, J.R., Jackson, S.P. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage EMBO Rep., 9 (2008),pp. 795-801
|
[4] |
Chen, Q., Chen, Y., Bian, C. et al. TET2 promotes histone O-GlcNAcylation during gene transcription Nature, 493 (2013),pp. 561-564
|
[5] |
Cotney, J., Leng, J., Yin, J. et al. The evolution of lineage-specific regulatory activities in the human embryonic limb Cell, 154 (2013),pp. 185-196
|
[6] |
Desai-Mehta, A., Cerosaletti, K.M., Concannon, P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization Mol. Cell. Biol., 21 (2001),pp. 2184-2191
|
[7] |
Difilippantonio, S., Nussenzweig, A. The NBS1-ATM connection revisited Cell Cycle, 6 (2007),pp. 2366-2370
|
[8] |
Falck, J., Coates, J., Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage Nature, 434 (2005),pp. 605-611
|
[9] |
Fattah, F., Lee, E.H., Weisensel, N. et al. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells PLoS Genet., 6 (2010),p. e1000855
|
[10] |
Faucher, D., Wellinger, R.J. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway PLoS Genet., 6 (2010),p. e1001082
|
[11] |
FitzGerald, J.E., Grenon, M., Lowndes, N.F. 53BP1: function and mechanisms of focal recruitment Biochem. Soc. Trans., 37 (2009),pp. 897-904
|
[12] |
Fnu, S., Williamson, E.A., De Haro, L.P. et al. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 540-545
|
[13] |
Fuchs, G., Shema, E., Vesterman, R. et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation Mol. Cell, 46 (2012),pp. 662-673
|
[14] |
Fujiki, R., Hashiba, W., Sekine, H. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination Nature, 480 (2011),pp. 557-560
|
[15] |
Ginjala, V., Nacerddine, K., Kulkarni, A. et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair Mol. Cell. Biol., 31 (2011),pp. 1972-1982
|
[16] |
Goodarzi, A.A., Jeggo, P.A. The repair and signaling responses to DNA double-strand breaks Adv. Genet., 82 (2013),pp. 1-45
|
[17] |
Greer, E.L., Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance Nat. Rev. Genet., 13 (2012),pp. 343-357
|
[18] |
Harper, J.W., Elledge, S.J. The DNA damage response: ten years after Mol. Cell, 28 (2007),pp. 739-745
|
[19] |
Hart, G.W., Housley, M.P., Slawson, C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins Nature, 446 (2007),pp. 1017-1022
|
[20] |
Hu, R., Wang, E., Peng, G. et al. Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage Cell Cycle, 12 (2013),pp. 2033-2041
|
[21] |
Huen, M.S., Grant, R., Manke, I. et al. Cell, 131 (2007),pp. 901-914
|
[22] |
Ikura, T., Tashiro, S., Kakino, A. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics Mol. Cell. Biol., 27 (2007),pp. 7028-7040
|
[23] |
Jackson, S.P., Bartek, J. The DNA-damage response in human biology and disease Nature, 461 (2009),pp. 1071-1078
|
[24] |
Kartikasari, A.E., Zhou, J.X., Kanji, M.S. et al. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation EMBO J., 32 (2013),pp. 1393-1408
|
[25] |
Keum, Y.S., Kim, H.G., Bode, A.M. et al. UVB-induced COX-2 expression requires histone H3 phosphorylation at Ser10 and Ser28 Oncogene, 32 (2013),pp. 444-452
|
[26] |
Kolas, N.K., Chapman, J.R., Nakada, S. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase Science, 318 (2007),pp. 1637-1640
|
[27] |
Kusch, T., Florens, L., Macdonald, W.H. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions Science, 306 (2004),pp. 2084-2087
|
[28] |
Love, D.C., Hanover, J.A. The hexosamine signaling pathway: deciphering the “O-GlcNAc code” Sci. STKE, 2005 (2005)
|
[29] |
Lukas, C., Melander, F., Stucki, M. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention EMBO J., 23 (2004),pp. 2674-2683
|
[30] |
Mailand, N., Bekker-Jensen, S., Faustrup, H. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins Cell, 131 (2007),pp. 887-900
|
[31] |
Mallette, F.A., Mattiroli, F., Cui, G. et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites EMBO J., 31 (2012),pp. 1865-1878
|
[32] |
Marteijn, J.A., Bekker-Jensen, S., Mailand, N. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response J. Cell Biol., 186 (2009),pp. 835-847
|
[33] |
Melander, F., Bekker-Jensen, S., Falck, J. et al. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin J. Cell Biol., 181 (2008),pp. 213-226
|
[34] |
Rogakou, E.P., Pilch, D.R., Orr, A.H. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 J. Biol. Chem., 273 (1998),pp. 5858-5868
|
[35] |
Rothbart, S.B., Dickson, B.M., Ong, M.S. et al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation Genes Dev., 27 (2013),pp. 1288-1298
|
[36] |
Sakabe, K., Wang, Z., Hart, G.W. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19915-19920
|
[37] |
Shrivastav, M., De Haro, L.P., Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice Cell Res., 18 (2008),pp. 134-147
|
[38] |
Spycher, C., Miller, E.S., Townsend, K. et al. Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin J. Cell Biol., 181 (2008),pp. 227-240
|
[39] |
Wang, Z., Gucek, M., Hart, G.W. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 13793-13798
|
[40] |
Wyman, C., Kanaar, R. DNA double-strand break repair: all's well that ends well Annu. Rev. Genet., 40 (2006),pp. 363-383
|
[41] |
Xu, Q., Yang, C., Du, Y. et al. AMPK regulates histone H2B O-GlcNAcylation Nucleic Acids Res., 42 (2014),pp. 5594-5604
|
[42] |
Yang, W., Xia, Y., Hawke, D. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis Cell, 150 (2012),pp. 685-696
|
[43] |
You, Z., Chahwan, C., Bailis, J. et al. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1 Mol. Cell. Biol., 25 (2005),pp. 5363-5379
|
[44] |
Zhang, F., Yu, X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription Mol. Cell, 41 (2011),pp. 384-397
|
[45] |
Zhang, Z., Jones, A., Joo, H.Y. et al. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing Genes Dev., 27 (2013),pp. 1581-1595
|
[46] |
Zhong, J., Martinez, M., Sengupta, S. et al. Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway Proteomics, 15 (2015),pp. 591-607
|