[1] |
Arribere, J.A., Bell, R.T., Fu, B.X. et al. Genetics, 198 (2014),pp. 837-846
|
[2] |
Bacman, S.R., Williams, S.L., Pinto, M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs Nat. Med., 19 (2013),pp. 1111-1113
|
[3] |
Barstead, R.J., Moerman, D.G. Methods Mol. Biol., 351 (2006),pp. 51-58
|
[4] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
|
[5] |
Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
|
[6] |
Belhaj, K., Chaparro-Garcia, A., Kamoun, S. et al. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system Plant Methods, 9 (2013),p. 39
|
[7] |
Carroll, D. Genome engineering with zinc-finger nucleases Genetics, 188 (2011),pp. 773-782
|
[8] |
Chang, N., Sun, C., Gao, L. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos Cell Res., 23 (2013),pp. 465-472
|
[9] |
Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
|
[10] |
Chen, C., Fenk, L.A., de Bono, M. Nucleic Acids Res., 41 (2013),p. e193
|
[11] |
Chen, X., Xu, F., Zhu, C. et al. Sci. Rep., 4 (2014),p. 7581
|
[12] |
Cheng, Z., Yi, P., Wang, X. et al. Nat. Biotechnol., 31 (2013),pp. 934-937
|
[13] |
Chiu, H., Schwartz, H.T., Antoshechkin, I. et al. Genetics, 195 (2013),pp. 1167-1171
|
[14] |
Cho, S.W., Lee, J., Carroll, D. et al. Genetics, 195 (2013),pp. 1177-1180
|
[15] |
Choudhary, E., Thakur, P., Pareek, M. et al. Gene silencing by CRISPR interference in mycobacteria Nat. Commun., 6 (2015),p. 6267
|
[16] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[17] |
Dianov, G.L., Hubscher, U. Mammalian base excision repair: the forgotten archangel Nucleic Acids Res., 41 (2013),pp. 3483-3490
|
[18] |
DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
|
[19] |
Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
|
[20] |
Dickinson, D.J., Pani, A.M., Heppert, J.K. et al. Streamlined genome engineering with a self-excising drug selection cassette Genetics, 200 (2015),pp. 1035-1049
|
[21] |
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[22] |
Edgley, M., D'Souza, A., Moulder, G. et al. Improved detection of small deletions in complex pools of DNA Nucleic Acids Res., 30 (2002),p. e52
|
[23] |
Farboud, B., Meyer, B.J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design Genetics, 199 (2015),pp. 959-971
|
[24] |
Flavell, S.W., Pokala, N., Macosko, E.Z. et al. Cell, 154 (2013),pp. 1023-1035
|
[25] |
Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
|
[26] |
Frokjaer-Jensen, C. Genetics, 195 (2013),pp. 635-642
|
[27] |
Frokjaer-Jensen, C., Davis, M.W., Ailion, M. et al. Nat. Methods, 9 (2012),pp. 117-118
|
[28] |
Frokjaer-Jensen, C., Davis, M.W., Hollopeter, G. et al. Nat. Methods, 7 (2010),pp. 451-453
|
[29] |
Frokjaer-Jensen, C., Davis, M.W., Hopkins, C.E. et al. Nat. Genet., 40 (2008),pp. 1375-1383
|
[30] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[31] |
Gammage, P.A., Rorbach, J., Vincent, A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations EMBO Mol. Med., 6 (2014),pp. 458-466
|
[32] |
Gengyo-Ando, K., Mitani, S. Biochem. Biophys. Res. Commun., 269 (2000),pp. 64-69
|
[33] |
Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
|
[34] |
Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
|
[35] |
Hannon, G.J. RNA interference Nature, 418 (2002),pp. 244-251
|
[36] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[37] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[38] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system PLoS One, 8 (2013),p. e68708
|
[39] |
Ji, W., Lee, D., Wong, E. et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation ACS Synth. Biol., 3 (2014),pp. 929-931
|
[40] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[41] |
Katic, I., Grosshans, H. Genetics, 195 (2013),pp. 1173-1176
|
[42] |
Kim, H., Ishidate, T., Ghanta, K.S. et al. Genetics, 197 (2014),pp. 1069-1080
|
[43] |
Larson, M.H., Gilbert, L.A., Wang, X. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression Nat. Protoc., 8 (2013),pp. 2180-2196
|
[44] |
Lemire, B. Mitochondrial genetics WormBook (2005),pp. 1-10
|
[45] |
Li, W., Teng, F., Li, T. et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 684-686
|
[46] |
Li, W., Yi, P., Ou, G. J. Cell Biol., 208 (2015),pp. 683-692
|
[47] |
Liu, P., Long, L., Xiong, K. et al. Cell Res., 24 (2014),pp. 886-889
|
[48] |
Lo, T.W., Pickle, C.S., Lin, S. et al. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions Genetics, 195 (2013),pp. 331-348
|
[49] |
Ma, Y., Zhang, X., Shen, B. et al. Generating rats with conditional alleles using CRISPR/Cas9 Cell Res., 24 (2014),pp. 122-125
|
[50] |
Maggio, I., Goncalves, M.A. Genome editing at the crossroads of delivery, specificity, and fidelity Trends Biotechnol., 33 (2015),pp. 280-291
|
[51] |
Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
|
[52] |
Mali, P., Esvelt, K.M., Church, G.M. Cas9 as a versatile tool for engineering biology Nat. Methods, 10 (2013),pp. 957-963
|
[53] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[54] |
Paix, A., Wang, Y., Smith, H.E. et al. Genetics, 198 (2014),pp. 1347-1356
|
[55] |
Plasterk, R.H., Groenen, J.T. Embo J., 11 (1992),pp. 287-290
|
[56] |
Port, F., Chen, H.M., Lee, T. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E2967-E2976
|
[57] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[58] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[59] |
Reddy, P., Ocampo, A., Suzuki, K. et al. Selective elimination of mitochondrial mutations in the germline by genome editing Cell, 161 (2015),pp. 459-469
|
[60] |
Robert, V., Bessereau, J.L. Embo J., 26 (2007),pp. 170-183
|
[61] |
Segal, D.J., Meckler, J.F. Genome engineering at the dawn of the golden age Annu. Rev. Genomics Hum. Genet., 14 (2013),pp. 135-158
|
[62] |
Shen, Z., Zhang, X., Chai, Y. et al. Dev. Cell, 30 (2014),pp. 625-636
|
[63] |
Singh, P., Schimenti, J.C., Bolcun-Filas, E. A mouse geneticist's practical guide to CRISPR applications Genetics, 199 (2015),pp. 1-15
|
[64] |
Smith, C., Gore, A., Yan, W. et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs Cell Stem Cell, 15 (2014),pp. 12-13
|
[65] |
Tian, D., Diao, M., Jiang, Y. et al. Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton Curr. Biol., 25 (2015),pp. 1135-1145
|
[66] |
Tzur, Y.B., Friedland, A.E., Nadarajan, S. et al. Genetics, 195 (2013),pp. 1181-1185
|
[67] |
Veres, A., Gosis, B.S., Ding, Q. et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing Cell Stem Cell, 15 (2014),pp. 27-30
|
[68] |
Voutev, R., Hubbard, E.J. Genetics, 180 (2008),pp. 103-119
|
[69] |
Waaijers, S., Boxem, M. Methods, 68 (2014),pp. 381-388
|
[70] |
Waaijers, S., Portegijs, V., Kerver, J. et al. Genetics, 195 (2013),pp. 1187-1191
|
[71] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[72] |
Wang, Y., Li, Z., Xu, J. et al. Cell Res., 23 (2013),pp. 1414-1416
|
[73] |
Ward, J.D. Genetics, 199 (2015),pp. 363-377
|
[74] |
Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
|
[75] |
Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
|
[76] |
Xu, S., Chisholm, A.D. Dev. Cell, 31 (2014),pp. 48-60
|
[77] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[78] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[79] |
Zhao, P., Zhang, Z., Ke, H. et al. Cell Res., 24 (2014),pp. 247-250
|