5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 5
May  2015
Turn off MathJax
Article Contents

Orotidine Monophosphate Decarboxylase – A Fascinating Workhorse Enzyme with Therapeutic Potential

doi: 10.1016/j.jgg.2015.04.005
More Information
  • Corresponding author: E-mail address: lkotra@uhnres.utoronto.ca (Lakshmi P. Kotra)
  • Received Date: 2014-12-26
  • Accepted Date: 2015-04-15
  • Rev Recd Date: 2015-04-13
  • Available Online: 2015-05-16
  • Publish Date: 2015-05-20
  • Orotidine 5′-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5′-monophosphate (OMP) to uridine 5′-monophosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo-uridine, a potential antimalarial agent.
  • loading
  • [1]
    Amyes, T.L., Ming, S.A., Goldman, L.M. et al. Orotidine 5′-monophosphate decarboxylase: transition state stabilization from remote protein-phosphodianion interactions Biochemistry, 51 (2012),pp. 4630-4632
    [2]
    Amyes, T.L., Richard, J.P., Tait, J.J. Activation of orotidine 5′-monophosphate decarboxylase by phosphite dianion: the whole substrate is the sum of two parts J. Am. Chem. Soc., 127 (2005),pp. 15708-15709
    [3]
    Amyes, T.L., Wood, B.M., Chan, K. et al. Formation and stability of a vinyl carbanion at the active site of orotidine 5′-monophosphate decarboxylase: pKa of the C-6 proton of enzyme-bound UMP J. Am. Chem. Soc., 130 (2008),pp. 1574-1575
    [4]
    Anderson, I., Sorokin, A., Kapatral, V. et al. FEMS Microbiol. Lett., 250 (2005),pp. 175-184
    [5]
    Appleby, T.C., Kinsland, C., Begley, T.P. et al. The crystal structure and mechanism of orotidine 5′-monophosphate decarboxylase Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2005-2010
    [6]
    Barnett, S.A., Amyes, T.L., Wood, B.M. et al. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5′-monophosphate decarboxylase: a two-part substrate approach Biochemistry, 47 (2008),pp. 7785-7787
    [7]
    Barnett, S.A., Amyes, T.L., Wood, B.M. et al. Activation of R235A mutant orotidine 5′-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235 Biochemistry, 49 (2010),pp. 824-826
    [8]
    Beak, P., Siegel, B. Mechanism of decarboxylation of 1,3-dimethylorotic acid – possible role for orotate decarboxylase J. Am. Chem. Soc., 95 (1973),pp. 7919-7920
    [9]
    Bello, A.M., Konforte, D., Poduch, E. et al. Structure-activity relationships of orotidine-5′-monophosphate decarboxylase inhibitors as anticancer agents J. Med. Chem., 52 (2009),pp. 1648-1658
    [10]
    Bello, A.M., Poduch, E., Fujihashi, M. et al. A potent, covalent inhibitor of orotidine 5′-monophosphate decarboxylase with antimalarial activity J. Med. Chem., 50 (2007),pp. 915-921
    [11]
    Bello, A.M., Poduch, E., Liu, Y. et al. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase J. Med. Chem., 51 (2008),pp. 439-448
    [12]
    Chan, K.K., Wood, B.M., Fedorov, A.A. et al. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization Biochemistry, 48 (2009),pp. 5518-5531
    [13]
    Crandall, I.E., Wasilewski, E., Bello, A.M. et al. Antimalarial activities of 6-iodouridine and its prodrugs and potential for combination therapy J. Med. Chem., 56 (2013),pp. 2348-2358
    [14]
    Desai, B.J., Goto, Y., Cembran, A. et al. Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 15066-15071
    [15]
    Desai, B.J., Wood, B.M., Fedorov, A.A. et al. Conformational changes in orotidine 5′-monophosphate decarboxylase: a structure-based explanation for how the 5′-phosphate group activates the enzyme Biochemistry, 51 (2012),pp. 8665-8678
    [16]
    Dix, D.E., Lehman, C.P., Jakubowski, A. et al. Pyrazofurin metabolism, enzyme inhibition, and resistance in L5178Y cells Cancer Res., 39 (1979),pp. 4485-4490
    [17]
    French, J.B., Soysa, D.R., Yates, P.A. et al. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization J. Biol. Chem., 286 (2011),pp. 20930-20941
    [18]
    Fujihashi, M. Investigation of the reaction mechanism of enzymes based on their crystal structures J. Cryst. Soc. Jpn., 56 (2014),pp. 236-240
    [19]
    Fujihashi, M., Bello, A.M., Poduch, E. et al. An unprecedented twist to ODCase catalytic activity J. Am. Chem. Soc., 127 (2005),pp. 15048-15050
    [20]
    Fujihashi, M., Ishida, T., Kuroda, S. et al. Substrate distortion contributes to the catalysis of orotidine 5′-monophosphate decarboxylase J. Am. Chem. Soc., 135 (2013),pp. 17432-17443
    [21]
    Fujihashi, M., Mito, K., Pai, E.F. et al. Atomic-resolution structure of the orotidine 5′-monophosphate decarboxylase product complex combined with surface plasmon resonance analysis: implications for the catalytic mechanism J. Biol. Chem., 288 (2013),pp. 9011-9016
    [22]
    Fujihashi, M., Wei, L., Kotra, L.P. et al. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5′-monophosphate decarboxylase J. Mol. Biol., 387 (2009),pp. 1199-1210
    [23]
    Goryanova, B., Goldman, L.M., Amyes, T.L. et al. Role of a guanidinium cation-phosphodianion pair in stabilizing the vinyl carbanion intermediate of orotidine 5′-phosphate decarboxylase-catalyzed reactions Biochemistry, 52 (2013),pp. 7500-7511
    [24]
    Hammond, D.J., Gutteridge, W.E. UMP synthesis in the kinetoplastida Biochim. Biophys. Acta, 718 (1982),pp. 1-10
    [25]
    Harris, P., Navarro Poulsen, J.C., Jensen, K.F. et al. Structural basis for the catalytic mechanism of a proficient enzyme: orotidine 5′-monophosphate decarboxylase Biochemistry, 39 (2000),pp. 4217-4224
    [26]
    Harris, P., Poulsen, J.C., Jensen, K.F. et al. Substrate binding induces domain movements in orotidine 5′-monophosphate decarboxylase J. Mol. Biol., 318 (2002),pp. 1019-1029
    [27]
    Heinrich, D., Diederichsen, U., Rudolph, M.G. Lys314 is a nucleophile in non-classical reactions of orotidine-5′-monophosphate decarboxylase Chemistry, 15 (2009),pp. 6619-6625
    [28]
    Hu, H., Boone, A., Yang, W. Mechanism of OMP decarboxylation in orotidine 5′-monophosphate decarboxylase J. Am. Chem. Soc., 130 (2008),pp. 14493-14503
    [29]
    Iiams, V., Desai, B.J., Fedorov, A.A. et al. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: importance of residues in the orotate binding site Biochemistry, 50 (2011),pp. 8497-8507
    [30]
    Jashes, M., Gonzalez, M., Lopez-Lastra, M. et al. Inhibitors of infectious pancreatic necrosis virus (IPNV) replication Antiviral Res., 29 (1996),pp. 309-312
    [31]
    Kimsey, H.H., Kaiser, D. The orotidine-5′-monophosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase gene family J. Biol. Chem., 267 (1992),pp. 819-824
    [32]
    Kotra, L. P., Pai, E. F., Bello, A. M. and Fujihashi, M. (2005). Inhibitors of orotidine monophosphate decarboxylase (ODCase) activity. Patent# WO2007038859 A1.
    [33]
    Krungkrai, S.R., Delfraino, B.J., Smiley, J.A. et al. Biochemistry, 44 (2005),pp. 1643-1652
    [34]
    Kuroda, M., Ohta, T., Uchiyama, I. et al. Lancet, 357 (2001),pp. 1225-1240
    [35]
    Langley, D.B., Shojaei, M., Chan, C. et al. Biochemistry, 47 (2008),pp. 3842-3854
    [36]
    Lee, J.K., Tantillo, D.J.
    [37]
    Lee, T.S., Chong, L.T., Chodera, J.D. et al. An alternative explanation for the catalytic proficiency of orotidine 5′-phosphate decarboxylase J. Am. Chem. Soc., 123 (2001),pp. 12837-12848
    [38]
    Levine, H.L., Brody, R.S., Westheimer, F.H. Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-beta-d-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and uridine 5′-phosphate Biochemistry, 19 (1980),pp. 4993-4999
    [39]
    Lewis, M., Meza-Avina, M.E., Wei, L. et al. Novel interactions of fluorinated nucleotide derivatives targeting orotidine 5′-monophosphate decarboxylase J. Med. Chem., 54 (2011),pp. 2891-2901
    [40]
    Makiuchi, T., Nara, T., Annoura, T. et al. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups Gene, 394 (2007),pp. 78-86
    [41]
    Meza-Avina, M.E., Wei, L., Liu, Y. et al. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase Bioorg. Med. Chem., 18 (2010),pp. 4032-4041
    [42]
    Miller, B.G., Butterfoss, G.L., Short, S.A. et al. Role of enzyme-ribofuranosyl contacts in the ground state and transition state for orotidine 5′-phosphate decarboxylase: a role for substrate destabilization? Biochemistry, 40 (2001),pp. 6227-6232
    [43]
    Miller, B.G., Hassell, A.M., Wolfenden, R. et al. Anatomy of a proficient enzyme: the structure of orotidine 5′-monophosphate decarboxylase in the presence and absence of a potential transition state analog Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2011-2016
    [44]
    Miller, B.G., Snider, M.J., Short, S.A. et al. Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5′-phosphate decarboxylase Biochemistry, 39 (2000),pp. 8113-8118
    [45]
    Miller, B.G., Snider, M.J., Wolfenden, R. et al. Dissecting a charged network at the active site of orotidine-5′-phosphate decarboxylase J. Biol. Chem., 276 (2001),pp. 15174-15176
    [46]
    Miller, B.G., Traut, T.W., Wolfenden, R. Effects of substrate binding determinants in the transition state for orotidine 5′-monophosphate decarboxylase Bioorg. Chem., 26 (1998),pp. 283-288
    [47]
    Miller, B.G., Wolfenden, R. Catalytic proficiency: the unusual case of OMP decarboxylase Annu. Rev. Biochem., 71 (2002),pp. 847-885
    [48]
    Morrey, J.D., Smee, D.F., Sidwell, R.W. et al. Identification of active antiviral compounds against a New York isolate of West Nile virus Antiviral Res., 55 (2002),pp. 107-116
    [49]
    Mundra, S., Kotra, L.P. Design of inhibitors of ODCase Future Med. Chem., 6 (2014),pp. 165-177
    [50]
    Phillips, L.M., Lee, J.K. Theoretical studies of the effect of thio substitution on orotidine monophosphate decarboxylase substrates J. Org. Chem., 70 (2005),pp. 1211-1221
    [51]
    Poduch, E., Bello, A.M., Tang, S. et al. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics J. Med. Chem., 49 (2006),pp. 4937-4945
    [52]
    Poduch, E., Wei, L., Pai, E.F. et al. Structural diversity and plasticity associated with nucleotides targeting orotidine monophosphate decarboxylase J. Med. Chem., 51 (2008),pp. 432-438
    [53]
    Porter, D.J., Short, S.A. Yeast orotidine-5′-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation Biochemistry, 39 (2000),pp. 11788-11800
    [54]
    Purohit, M.K., Poduch, E., Wei, L.W. et al. Novel cytidine-based orotidine-5′-monophosphate decarboxylase inhibitors with an unusual twist J. Med. Chem., 55 (2012),pp. 9988-9997
    [55]
    Radford, A., Dix, N.I. Comparison of the orotidine 5′-monophosphate decarboxylase sequences of eight species Genome, 30 (1988),pp. 501-505
    [56]
    Radzicka, A., Wolfenden, R. A proficient enzyme Science, 267 (1995),pp. 90-93
    [57]
    Rathod, P.K., Reyes, P. J. Biol. Chem., 258 (1983),pp. 2852-2855
    [58]
    Scott, H.V., Gero, A.M., O'sullivan, W.J. Mol. Biochem. Parasitol., 18 (1986),pp. 3-15
    [59]
    Seymour, K.K., Lyons, S.D., Phillips, L. et al. Biochemistry, 33 (1994),pp. 5268-5274
    [60]
    Shostak, K., Jones, M.E. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies Biochemistry, 31 (1992),pp. 12155-12161
    [61]
    Silverman, R.B., Groziak, M.P. Model chemistry for a covalent mechanism of action of orotidine 5′-phosphate decarboxylase J. Am. Chem. Soc., 104 (1982),pp. 6434-6439
    [62]
    Smiley, J.A., Hay, K.M., Levison, B.S. A reexamination of the substrate utilization of 2-thioorotidine-5′-monophosphate by yeast orotidine-5′-monophosphate decarboxylase Bioorg. Chem., 29 (2001),pp. 96-106
    [63]
    Smiley, J.A., Jones, M.E. A unique catalytic and inhibitor-binding role for Lys93 of yeast orotidylate decarboxylase Biochemistry, 31 (1992),pp. 12162-12168
    [64]
    Smiley, J.A., Saleh, L. Active site probes for yeast OMP decarboxylase: inhibition constants of UMP and Thio-Substituted UMP Analogues and Greatly Reduced Activity toward CMP-6-Carboxylate Bioorg. Chem., 27 (1999),pp. 297-306
    [65]
    Spong, K., Amyes, T.L., Richard, J.P. Enzyme architecture: the activating oxydianion binding domain for orotidine 5′-monophophate decarboxylase J. Am. Chem. Soc., 135 (2013),pp. 18343-18346
    [66]
    Stasolla, C., Katahira, R., Thorpe, T.A. et al. Purine and pyrimidine nucleotide metabolism in higher plants J. Plant Physiol., 160 (2003),pp. 1271-1295
    [67]
    Takashima, Y., Mizohata, E., Krungkrai, S.R. et al. J. Biochem., 152 (2012),pp. 133-138
    [68]
    Tokuoka, K., Kusakari, Y., Krungkrai, S.R. et al. J. Biochem., 143 (2008),pp. 69-78
    [69]
    Toth, K., Amyes, T.L., Wood, B.M. et al. Product deuterium isotope effect for orotidine 5′-monophosphate decarboxylase: evidence for the existence of a short-lived carbanion intermediate J. Am. Chem. Soc., 129 (2007),pp. 12946-12947
    [70]
    Toth, K., Amyes, T.L., Wood, B.M. et al. Product deuterium isotope effects for orotidine 5′-monophosphate decarboxylase: effect of changing substrate and enzyme structure on the partitioning of the vinyl carbanion reaction intermediate J. Am. Chem. Soc., 132 (2010),pp. 7018-7024
    [71]
    Toth, K., Amyes, T.L., Wood, B.M. et al. An examination of the relationship between active site loop size and thermodynamic activation parameters for orotidine 5′-monophosphate decarboxylase from mesophilic and thermophilic organisms Biochemistry, 48 (2009),pp. 8006-8013
    [72]
    Traut, T.W., Temple, B.R. The chemistry of the reaction determines the invariant amino acids during the evolution and divergence of orotidine 5′-monophosphate decarboxylase J. Biol. Chem., 275 (2000),pp. 28675-28681
    [73]
    Tsang, W.Y., Wood, B.M., Wong, F.M. et al. Proton transfer from C-6 of uridine 5′-monophosphate catalyzed by orotidine 5′-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent J. Am. Chem. Soc., 134 (2012),pp. 14580-14594
    [74]
    Van Vleet, J.L., Reinhardt, L.A., Miller, B.G. et al. Carbon isotope effect study on orotidine 5′-monophosphate decarboxylase: support for an anionic intermediate Biochemistry, 47 (2008),pp. 798-803
    [75]
    Vedadi, M., Lew, J., Artz, J. et al. Mol. Biochem. Parasitol., 151 (2007),pp. 100-110
    [76]
    Wittmann, J.G., Heinrich, D., Gasow, K. et al. Structures of the human orotidine-5′-monophosphate decarboxylase support a covalent mechanism and provide a framework for drug design Structure, 16 (2008),pp. 82-92
    [77]
    Wood, B.M., Amyes, T.L., Fedorov, A.A. et al. Conformational changes in orotidine 5′-monophosphate decarboxylase: “remote” residues that stabilize the active conformation Biochemistry, 49 (2010),pp. 3514-3516
    [78]
    Wu, N., Gillon, W., Pai, E.F. Mapping the active site-ligand interactions of orotidine 5′-monophosphate decarboxylase by crystallography Biochemistry, 41 (2002),pp. 4002-4011
    [79]
    Wu, N., Mo, Y., Gao, J. et al. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2017-2022
    [80]
    Wu, N., Pai, E.F. Crystal structures of inhibitor complexes reveal an alternate binding mode in orotidine-5′-monophosphate decarboxylase J. Biol. Chem., 277 (2002),pp. 28080-28087
    [81]
    Yablonski, M.J., Pasek, D.A., Han, B.D. et al. Intrinsic activity and stability of bifunctional human UMP synthase and its two separate catalytic domains, orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase J. Biol. Chem., 271 (1996),pp. 10704-10708
    [82]
    Yuan, J., Cardenas, A.M., Gilbert, H.F. et al. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase Protein Sci., 20 (2011),pp. 1891-1906
    [83]
    Zeikus, J.G., Wolfe, R.S. J. Bacterial., 109 (1972),pp. 707-713
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return