[1] |
Amyes, T.L., Ming, S.A., Goldman, L.M. et al. Orotidine 5′-monophosphate decarboxylase: transition state stabilization from remote protein-phosphodianion interactions Biochemistry, 51 (2012),pp. 4630-4632
|
[2] |
Amyes, T.L., Richard, J.P., Tait, J.J. Activation of orotidine 5′-monophosphate decarboxylase by phosphite dianion: the whole substrate is the sum of two parts J. Am. Chem. Soc., 127 (2005),pp. 15708-15709
|
[3] |
Amyes, T.L., Wood, B.M., Chan, K. et al. Formation and stability of a vinyl carbanion at the active site of orotidine 5′-monophosphate decarboxylase: pKa of the C-6 proton of enzyme-bound UMP J. Am. Chem. Soc., 130 (2008),pp. 1574-1575
|
[4] |
Anderson, I., Sorokin, A., Kapatral, V. et al. FEMS Microbiol. Lett., 250 (2005),pp. 175-184
|
[5] |
Appleby, T.C., Kinsland, C., Begley, T.P. et al. The crystal structure and mechanism of orotidine 5′-monophosphate decarboxylase Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2005-2010
|
[6] |
Barnett, S.A., Amyes, T.L., Wood, B.M. et al. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5′-monophosphate decarboxylase: a two-part substrate approach Biochemistry, 47 (2008),pp. 7785-7787
|
[7] |
Barnett, S.A., Amyes, T.L., Wood, B.M. et al. Activation of R235A mutant orotidine 5′-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235 Biochemistry, 49 (2010),pp. 824-826
|
[8] |
Beak, P., Siegel, B. Mechanism of decarboxylation of 1,3-dimethylorotic acid – possible role for orotate decarboxylase J. Am. Chem. Soc., 95 (1973),pp. 7919-7920
|
[9] |
Bello, A.M., Konforte, D., Poduch, E. et al. Structure-activity relationships of orotidine-5′-monophosphate decarboxylase inhibitors as anticancer agents J. Med. Chem., 52 (2009),pp. 1648-1658
|
[10] |
Bello, A.M., Poduch, E., Fujihashi, M. et al. A potent, covalent inhibitor of orotidine 5′-monophosphate decarboxylase with antimalarial activity J. Med. Chem., 50 (2007),pp. 915-921
|
[11] |
Bello, A.M., Poduch, E., Liu, Y. et al. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase J. Med. Chem., 51 (2008),pp. 439-448
|
[12] |
Chan, K.K., Wood, B.M., Fedorov, A.A. et al. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization Biochemistry, 48 (2009),pp. 5518-5531
|
[13] |
Crandall, I.E., Wasilewski, E., Bello, A.M. et al. Antimalarial activities of 6-iodouridine and its prodrugs and potential for combination therapy J. Med. Chem., 56 (2013),pp. 2348-2358
|
[14] |
Desai, B.J., Goto, Y., Cembran, A. et al. Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 15066-15071
|
[15] |
Desai, B.J., Wood, B.M., Fedorov, A.A. et al. Conformational changes in orotidine 5′-monophosphate decarboxylase: a structure-based explanation for how the 5′-phosphate group activates the enzyme Biochemistry, 51 (2012),pp. 8665-8678
|
[16] |
Dix, D.E., Lehman, C.P., Jakubowski, A. et al. Pyrazofurin metabolism, enzyme inhibition, and resistance in L5178Y cells Cancer Res., 39 (1979),pp. 4485-4490
|
[17] |
French, J.B., Soysa, D.R., Yates, P.A. et al. The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization J. Biol. Chem., 286 (2011),pp. 20930-20941
|
[18] |
Fujihashi, M. Investigation of the reaction mechanism of enzymes based on their crystal structures J. Cryst. Soc. Jpn., 56 (2014),pp. 236-240
|
[19] |
Fujihashi, M., Bello, A.M., Poduch, E. et al. An unprecedented twist to ODCase catalytic activity J. Am. Chem. Soc., 127 (2005),pp. 15048-15050
|
[20] |
Fujihashi, M., Ishida, T., Kuroda, S. et al. Substrate distortion contributes to the catalysis of orotidine 5′-monophosphate decarboxylase J. Am. Chem. Soc., 135 (2013),pp. 17432-17443
|
[21] |
Fujihashi, M., Mito, K., Pai, E.F. et al. Atomic-resolution structure of the orotidine 5′-monophosphate decarboxylase product complex combined with surface plasmon resonance analysis: implications for the catalytic mechanism J. Biol. Chem., 288 (2013),pp. 9011-9016
|
[22] |
Fujihashi, M., Wei, L., Kotra, L.P. et al. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5′-monophosphate decarboxylase J. Mol. Biol., 387 (2009),pp. 1199-1210
|
[23] |
Goryanova, B., Goldman, L.M., Amyes, T.L. et al. Role of a guanidinium cation-phosphodianion pair in stabilizing the vinyl carbanion intermediate of orotidine 5′-phosphate decarboxylase-catalyzed reactions Biochemistry, 52 (2013),pp. 7500-7511
|
[24] |
Hammond, D.J., Gutteridge, W.E. UMP synthesis in the kinetoplastida Biochim. Biophys. Acta, 718 (1982),pp. 1-10
|
[25] |
Harris, P., Navarro Poulsen, J.C., Jensen, K.F. et al. Structural basis for the catalytic mechanism of a proficient enzyme: orotidine 5′-monophosphate decarboxylase Biochemistry, 39 (2000),pp. 4217-4224
|
[26] |
Harris, P., Poulsen, J.C., Jensen, K.F. et al. Substrate binding induces domain movements in orotidine 5′-monophosphate decarboxylase J. Mol. Biol., 318 (2002),pp. 1019-1029
|
[27] |
Heinrich, D., Diederichsen, U., Rudolph, M.G. Lys314 is a nucleophile in non-classical reactions of orotidine-5′-monophosphate decarboxylase Chemistry, 15 (2009),pp. 6619-6625
|
[28] |
Hu, H., Boone, A., Yang, W. Mechanism of OMP decarboxylation in orotidine 5′-monophosphate decarboxylase J. Am. Chem. Soc., 130 (2008),pp. 14493-14503
|
[29] |
Iiams, V., Desai, B.J., Fedorov, A.A. et al. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: importance of residues in the orotate binding site Biochemistry, 50 (2011),pp. 8497-8507
|
[30] |
Jashes, M., Gonzalez, M., Lopez-Lastra, M. et al. Inhibitors of infectious pancreatic necrosis virus (IPNV) replication Antiviral Res., 29 (1996),pp. 309-312
|
[31] |
Kimsey, H.H., Kaiser, D. The orotidine-5′-monophosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase gene family J. Biol. Chem., 267 (1992),pp. 819-824
|
[32] |
Kotra, L. P., Pai, E. F., Bello, A. M. and Fujihashi, M. (2005). Inhibitors of orotidine monophosphate decarboxylase (ODCase) activity. Patent# WO2007038859 A1.
|
[33] |
Krungkrai, S.R., Delfraino, B.J., Smiley, J.A. et al. Biochemistry, 44 (2005),pp. 1643-1652
|
[34] |
Kuroda, M., Ohta, T., Uchiyama, I. et al. Lancet, 357 (2001),pp. 1225-1240
|
[35] |
Langley, D.B., Shojaei, M., Chan, C. et al. Biochemistry, 47 (2008),pp. 3842-3854
|
[36] |
Lee, J.K., Tantillo, D.J.
|
[37] |
Lee, T.S., Chong, L.T., Chodera, J.D. et al. An alternative explanation for the catalytic proficiency of orotidine 5′-phosphate decarboxylase J. Am. Chem. Soc., 123 (2001),pp. 12837-12848
|
[38] |
Levine, H.L., Brody, R.S., Westheimer, F.H. Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-beta-d-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and uridine 5′-phosphate Biochemistry, 19 (1980),pp. 4993-4999
|
[39] |
Lewis, M., Meza-Avina, M.E., Wei, L. et al. Novel interactions of fluorinated nucleotide derivatives targeting orotidine 5′-monophosphate decarboxylase J. Med. Chem., 54 (2011),pp. 2891-2901
|
[40] |
Makiuchi, T., Nara, T., Annoura, T. et al. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups Gene, 394 (2007),pp. 78-86
|
[41] |
Meza-Avina, M.E., Wei, L., Liu, Y. et al. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase Bioorg. Med. Chem., 18 (2010),pp. 4032-4041
|
[42] |
Miller, B.G., Butterfoss, G.L., Short, S.A. et al. Role of enzyme-ribofuranosyl contacts in the ground state and transition state for orotidine 5′-phosphate decarboxylase: a role for substrate destabilization? Biochemistry, 40 (2001),pp. 6227-6232
|
[43] |
Miller, B.G., Hassell, A.M., Wolfenden, R. et al. Anatomy of a proficient enzyme: the structure of orotidine 5′-monophosphate decarboxylase in the presence and absence of a potential transition state analog Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2011-2016
|
[44] |
Miller, B.G., Snider, M.J., Short, S.A. et al. Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5′-phosphate decarboxylase Biochemistry, 39 (2000),pp. 8113-8118
|
[45] |
Miller, B.G., Snider, M.J., Wolfenden, R. et al. Dissecting a charged network at the active site of orotidine-5′-phosphate decarboxylase J. Biol. Chem., 276 (2001),pp. 15174-15176
|
[46] |
Miller, B.G., Traut, T.W., Wolfenden, R. Effects of substrate binding determinants in the transition state for orotidine 5′-monophosphate decarboxylase Bioorg. Chem., 26 (1998),pp. 283-288
|
[47] |
Miller, B.G., Wolfenden, R. Catalytic proficiency: the unusual case of OMP decarboxylase Annu. Rev. Biochem., 71 (2002),pp. 847-885
|
[48] |
Morrey, J.D., Smee, D.F., Sidwell, R.W. et al. Identification of active antiviral compounds against a New York isolate of West Nile virus Antiviral Res., 55 (2002),pp. 107-116
|
[49] |
Mundra, S., Kotra, L.P. Design of inhibitors of ODCase Future Med. Chem., 6 (2014),pp. 165-177
|
[50] |
Phillips, L.M., Lee, J.K. Theoretical studies of the effect of thio substitution on orotidine monophosphate decarboxylase substrates J. Org. Chem., 70 (2005),pp. 1211-1221
|
[51] |
Poduch, E., Bello, A.M., Tang, S. et al. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics J. Med. Chem., 49 (2006),pp. 4937-4945
|
[52] |
Poduch, E., Wei, L., Pai, E.F. et al. Structural diversity and plasticity associated with nucleotides targeting orotidine monophosphate decarboxylase J. Med. Chem., 51 (2008),pp. 432-438
|
[53] |
Porter, D.J., Short, S.A. Yeast orotidine-5′-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation Biochemistry, 39 (2000),pp. 11788-11800
|
[54] |
Purohit, M.K., Poduch, E., Wei, L.W. et al. Novel cytidine-based orotidine-5′-monophosphate decarboxylase inhibitors with an unusual twist J. Med. Chem., 55 (2012),pp. 9988-9997
|
[55] |
Radford, A., Dix, N.I. Comparison of the orotidine 5′-monophosphate decarboxylase sequences of eight species Genome, 30 (1988),pp. 501-505
|
[56] |
Radzicka, A., Wolfenden, R. A proficient enzyme Science, 267 (1995),pp. 90-93
|
[57] |
Rathod, P.K., Reyes, P. J. Biol. Chem., 258 (1983),pp. 2852-2855
|
[58] |
Scott, H.V., Gero, A.M., O'sullivan, W.J. Mol. Biochem. Parasitol., 18 (1986),pp. 3-15
|
[59] |
Seymour, K.K., Lyons, S.D., Phillips, L. et al. Biochemistry, 33 (1994),pp. 5268-5274
|
[60] |
Shostak, K., Jones, M.E. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies Biochemistry, 31 (1992),pp. 12155-12161
|
[61] |
Silverman, R.B., Groziak, M.P. Model chemistry for a covalent mechanism of action of orotidine 5′-phosphate decarboxylase J. Am. Chem. Soc., 104 (1982),pp. 6434-6439
|
[62] |
Smiley, J.A., Hay, K.M., Levison, B.S. A reexamination of the substrate utilization of 2-thioorotidine-5′-monophosphate by yeast orotidine-5′-monophosphate decarboxylase Bioorg. Chem., 29 (2001),pp. 96-106
|
[63] |
Smiley, J.A., Jones, M.E. A unique catalytic and inhibitor-binding role for Lys93 of yeast orotidylate decarboxylase Biochemistry, 31 (1992),pp. 12162-12168
|
[64] |
Smiley, J.A., Saleh, L. Active site probes for yeast OMP decarboxylase: inhibition constants of UMP and Thio-Substituted UMP Analogues and Greatly Reduced Activity toward CMP-6-Carboxylate Bioorg. Chem., 27 (1999),pp. 297-306
|
[65] |
Spong, K., Amyes, T.L., Richard, J.P. Enzyme architecture: the activating oxydianion binding domain for orotidine 5′-monophophate decarboxylase J. Am. Chem. Soc., 135 (2013),pp. 18343-18346
|
[66] |
Stasolla, C., Katahira, R., Thorpe, T.A. et al. Purine and pyrimidine nucleotide metabolism in higher plants J. Plant Physiol., 160 (2003),pp. 1271-1295
|
[67] |
Takashima, Y., Mizohata, E., Krungkrai, S.R. et al. J. Biochem., 152 (2012),pp. 133-138
|
[68] |
Tokuoka, K., Kusakari, Y., Krungkrai, S.R. et al. J. Biochem., 143 (2008),pp. 69-78
|
[69] |
Toth, K., Amyes, T.L., Wood, B.M. et al. Product deuterium isotope effect for orotidine 5′-monophosphate decarboxylase: evidence for the existence of a short-lived carbanion intermediate J. Am. Chem. Soc., 129 (2007),pp. 12946-12947
|
[70] |
Toth, K., Amyes, T.L., Wood, B.M. et al. Product deuterium isotope effects for orotidine 5′-monophosphate decarboxylase: effect of changing substrate and enzyme structure on the partitioning of the vinyl carbanion reaction intermediate J. Am. Chem. Soc., 132 (2010),pp. 7018-7024
|
[71] |
Toth, K., Amyes, T.L., Wood, B.M. et al. An examination of the relationship between active site loop size and thermodynamic activation parameters for orotidine 5′-monophosphate decarboxylase from mesophilic and thermophilic organisms Biochemistry, 48 (2009),pp. 8006-8013
|
[72] |
Traut, T.W., Temple, B.R. The chemistry of the reaction determines the invariant amino acids during the evolution and divergence of orotidine 5′-monophosphate decarboxylase J. Biol. Chem., 275 (2000),pp. 28675-28681
|
[73] |
Tsang, W.Y., Wood, B.M., Wong, F.M. et al. Proton transfer from C-6 of uridine 5′-monophosphate catalyzed by orotidine 5′-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent J. Am. Chem. Soc., 134 (2012),pp. 14580-14594
|
[74] |
Van Vleet, J.L., Reinhardt, L.A., Miller, B.G. et al. Carbon isotope effect study on orotidine 5′-monophosphate decarboxylase: support for an anionic intermediate Biochemistry, 47 (2008),pp. 798-803
|
[75] |
Vedadi, M., Lew, J., Artz, J. et al. Mol. Biochem. Parasitol., 151 (2007),pp. 100-110
|
[76] |
Wittmann, J.G., Heinrich, D., Gasow, K. et al. Structures of the human orotidine-5′-monophosphate decarboxylase support a covalent mechanism and provide a framework for drug design Structure, 16 (2008),pp. 82-92
|
[77] |
Wood, B.M., Amyes, T.L., Fedorov, A.A. et al. Conformational changes in orotidine 5′-monophosphate decarboxylase: “remote” residues that stabilize the active conformation Biochemistry, 49 (2010),pp. 3514-3516
|
[78] |
Wu, N., Gillon, W., Pai, E.F. Mapping the active site-ligand interactions of orotidine 5′-monophosphate decarboxylase by crystallography Biochemistry, 41 (2002),pp. 4002-4011
|
[79] |
Wu, N., Mo, Y., Gao, J. et al. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 2017-2022
|
[80] |
Wu, N., Pai, E.F. Crystal structures of inhibitor complexes reveal an alternate binding mode in orotidine-5′-monophosphate decarboxylase J. Biol. Chem., 277 (2002),pp. 28080-28087
|
[81] |
Yablonski, M.J., Pasek, D.A., Han, B.D. et al. Intrinsic activity and stability of bifunctional human UMP synthase and its two separate catalytic domains, orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase J. Biol. Chem., 271 (1996),pp. 10704-10708
|
[82] |
Yuan, J., Cardenas, A.M., Gilbert, H.F. et al. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase Protein Sci., 20 (2011),pp. 1891-1906
|
[83] |
Zeikus, J.G., Wolfe, R.S. J. Bacterial., 109 (1972),pp. 707-713
|