[1] |
Ali, J.A.M., Creek, D.J., Burgess, K. et al. Mol. Pharmacol., 83 (2013),pp. 439-453
|
[2] |
Andersen, G., Björnberg, O., Polakova, S. et al. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes J. Mol. Biol., 380 (2008),pp. 656-666
|
[3] |
Andersson Rasmussen, A., Kandasamy, D., Beck, H. et al. Eukaryot. Cell, 13 (2014),pp. 31-42
|
[4] |
Angeletti, P.C., Engler, J.A. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix J. Virol., 72 (1998),pp. 2896-2904
|
[5] |
Balasubramaniam, S., Duley, J., Christodoulou, J. Inborn errors of pyrimidine metabolism: clinical update and therapy J. Inherit. Metab. Dis., 37 (2014),pp. 687-698
|
[6] |
Banerjee, D., Burkard, L., Panepinto, J.C. Inhibition of nucleotide biosynthesis potentiates the antifungal activity of amphotericin B PLoS One, 9 (2014),p. e87246
|
[7] |
Bardeleben, C., Sharma, S., Reeve, J.R. et al. Metabolomics identifies pyrimidine starvation as the mechanism of 5-aminoimidazole-4-carboxamide-1-β-riboside-induced apoptosis in multiple myeloma cells Mol. Cancer Ther., 12 (2013),pp. 1310-1321
|
[8] |
Barry, R.M., Bitbol, A., Lorestani, A. et al. Large-scale filament formation inhibits the activity of CTP synthetase eLife, 3 (2014),p. e03638
|
[9] |
Ben-Sahra, I., Howell, J.J., Asara, J.M. et al. Science, 339 (2013),pp. 1323-1328
|
[10] |
Carcamo, W.C., Calise, S.J., von Mühlen, C.A. et al. Molecular cell biology and immunobiology of mammalian rod/ring structures Int. Rev. Cell Mol. Biol., 308 (2014),pp. 35-74
|
[11] |
Chauhan, M., Kumar, R. Medicinal attributes of pyrazolo[3,4-d]pyrimidines: a review Bioorg. Med. Chem., 21 (2013),pp. 5657-5668
|
[12] |
Chen, C.T., Slocum, R.D. Plant Physiol. Biochem., 46 (2008),pp. 150-159
|
[13] |
Chen, K., Zhang, J., Tastan, Ö.Y. et al. J. Genet. Genomics, 38 (2011),pp. 391-402
|
[14] |
Christopherson, R.I., Jones, M.E. Interconversion of carbamayl-L-aspartate and L-dihydroorotate by dihydroorotase from mouse Ehrlich ascites carcinoma J. Biol. Chem., 254 (1979),pp. 12506-12512
|
[15] |
Cox, R.A. Macromolecular structure and properties of ribonucleic acids Q. Rev. Chem. Soc., 22 (1968),pp. 499-526
|
[16] |
De Gontijo, F.A., Pascon, R.C., Fernandes, L. et al. Fungal Genet. Biol., 70 (2014),pp. 12-23
|
[17] |
Evans, D.R., Guy, H.I. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway J. Biol. Chem., 279 (2004),pp. 33035-33038
|
[18] |
Fox, B.A., Bzik, D.J. Nature, 415 (2002),pp. 926-929
|
[19] |
Fox, B.A., Bzik, D.J. Infect. Immun., 78 (2010),pp. 3744-3752
|
[20] |
García-Bayona, L., Garavito, M.F., Lozano, G.L. et al. Gene, 537 (2014),pp. 312-321
|
[21] |
Geigenberger, P., Regierer, B., Nunes-Nesi, A. et al. Plant Cell, 17 (2005),pp. 2077-2088
|
[22] |
Hortua Triana, M.A., Huynh, M.H., Garavito, M.F. et al. Mol. Biochem. Parasitol., 184 (2012),pp. 71-81
|
[23] |
Hu, J., Locasale, J.W., Bielas, J.H. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network Nat. Biotechnol., 31 (2013),pp. 522-529
|
[24] |
Huang, M., Graves, L.M. Cell. Mol. Life Sci., 60 (2003),pp. 321-336
|
[25] |
Hyde, J.E. Targeting purine and pyrimidine metabolism in human apicomplexan parasites Curr. Drug Targets, 8 (2007),pp. 31-47
|
[26] |
Jain, K.S., Chitre, T.S., Miniyar, P.B. et al. Biological and medicinal significance of pyrimidines Curr. Sci., 90 (2006),pp. 793-803
|
[27] |
Jones, M.E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis Annu. Rev. Biochem., 49 (1980),pp. 253-279
|
[28] |
Jung, E.J., Kwon, S.W., Jung, B.H. et al. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver J. Lipid Res., 52 (2011),pp. 1617-1625
|
[29] |
Jung, E.J., Lee, K.Y., Lee, B.H. Proliferating effect of orotic acid through mTORC1 activation mediated by negative regulation of AMPK in SK-Hep1 hepatocellular carcinoma cells J. Toxicol. Sci., 37 (2012),pp. 813-821
|
[30] |
Katahira, R., Ashihara, H. Physiol. Plant, 127 (2006),pp. 38-43
|
[31] |
Ke, H., Morrisey, J.M., Ganesan, S.M. et al. Eukaryot. Cell, 10 (2011),pp. 1053-1061
|
[32] |
Kusch, H., Engelmann, S., Bode, R. et al. Int. J. Med. Microbiol., 298 (2008),pp. 291-318
|
[33] |
Le, T.T., Ziemba, A., Urasaki, Y. et al. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation J. Lipid Res., 54 (2013),pp. 1044-1057
|
[34] |
Liu, J.L. The enigmatic cytoophidium: compartmentation of CTP synthase via filament formation Bioessays, 33 (2011),pp. 159-164
|
[35] |
Loh, K.D., Gyaneshwar, P., Markenscoff Papadimitriou, E. et al. A previously undescribed pathway for pyrimidine catabolism Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5114-5119
|
[36] |
Merry, A., Qiao, M., Hasler, M. et al. Biochem. J, 458 (2014),pp. 343-353
|
[37] |
Munger, J., Bajad, S.U., Coller, H.A. et al. Dynamics of the cellular metabolome during human cytomegalovirus infection PLoS Pathog., 2 (2006),p. e132
|
[38] |
Nara, T., Hshimoto, T., Aoki, T. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes Gene, 257 (2000),pp. 209-222
|
[39] |
Olszewski, K.L., Morrisey, J.M., Wilinski, D. et al. Cell Host Microbe, 5 (2009),pp. 191-199
|
[40] |
Ong, H.B., Sienkiewicz, N., Wyllie, S. et al. Mol. Microbiol., 90 (2013),pp. 443-455
|
[41] |
Painter, H.J., Morrisey, J.M., Mather, M.W. et al. Nature, 446 (2007),pp. 88-91
|
[42] |
Patel, B.N., West, T.P. FEMS Microbiol. Lett., 40 (1987),pp. 33-36
|
[43] |
Pfefferkorn, E.R., Pfefferkorn, L.C. J. Parasitol., 65 (1979),pp. 364-370
|
[44] |
Poirier, S., Samami, S., Mamarbachi, M. et al. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism J. Biol. Chem., 289 (2014),pp. 18736-18751
|
[45] |
Robitaille, A.M., Christen, S., Shimobayashi, M. et al. Science, 339 (2013),pp. 1320-1323
|
[46] |
Sahoo, S., Aurich, M.K., Jonsson, J.J. et al. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease Front. Physiol., 5 (2014),p. 91
|
[47] |
Schröder, M., Giermann, N., Zrenner, R. Plant Physiol., 138 (2005),pp. 1926-1938
|
[48] |
Sharma, V., Chitranshi, N., Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world Int. J. Med. Chem., 2014 (2014),p. 202784
|
[49] |
Shock, J.L., Fischer, K.F., DeRisi, J.L. Genome Biol., 8 (2007),p. R134
|
[50] |
Sigoillot, F.D., Berkowski, J.A., Sigoillot, S.M. et al. Cell cycle-dependent regulation of pyrimidine biosynthesis J. Biol. Chem., 278 (2003),pp. 3403-3409
|
[51] |
Sreedharan, S., Shaik, J.H.A., Olszewski, P.K. et al. Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression BMC Genomics, 11 (2010),p. 17
|
[52] |
Stasolla, C., Loukanina, N., Yeung, E.C. et al. Alterations in pyrimidine nucleotide metabolism as an early signal during the execution of programmed cell death in tobacco BY-2 cells J. Exp. Bot., 55 (2004),pp. 2513-2522
|
[53] |
Tiedje, K.E., Stevens, K., Barnes, S. et al. Beta-alanine as a small molecule neurotransmitter Neurochem. Int., 57 (2010),pp. 177-188
|
[54] |
Urasaki, Y., Pizzorno, G., Le, T.T. Uridine affects liver protein glycosylation, insulin signaling, and heme biosynthesis PLoS One, 9 (2014),p. e99728
|
[55] |
Vastag, L., Koyuncu, E., Grady, S.L. et al. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism PLoS Pathog., 7 (2011),p. e1002124
|
[56] |
Vogels, G., van der Drift, C. Degradation of purines and pyrimidines by microorganisms Bacteriol. Rev., 40 (1976),pp. 403-468
|
[57] |
Webb, M.E., Smith, A.G., Abell, C. Biosynthesis of pantothenate Nat. Prod. Rep., 21 (2004),pp. 695-721
|
[58] |
Zameitat, E., Freymark, G., Dietz, C.D. et al. Appl. Environ. Microbiol., 73 (2007),pp. 3371-3379
|