[1] |
Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Methods, 7 (2010),pp. 248-249
|
[2] |
Alonso, E., Cervera, J., Garcia-Espana, A. et al. Oxidative inactivation of carbamoyl phosphate synthetase (ammonia). Mechanism and sites of oxidation, degradation of the oxidized enzyme, and inactivation by glycerol, EDTA, and thiol protecting agents J. Biol. Chem., 267 (1992),pp. 4524-4532
|
[3] |
Alonso, E., Rubio, V. Affinity cleavage of carbamoyl-phosphate synthetase I localizes regions of the enzyme interacting with the molecule of ATP that phosphorylates carbamate Eur. J. Biochem., 229 (1995),pp. 377-384
|
[4] |
Bender, D.A.
|
[5] |
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976),pp. 248-254
|
[6] |
Brusilow, S.W., Horwich, A.L.
|
[7] |
Case, D.A., , Darden, T., Gohlke, H. et al. The Amber biomolecular simulation programs J. Computat. Chem., 26 (2005),pp. 1668-1688
|
[8] |
Cervera, J., Conejero-Lara, F., Ruiz-Sanz, J. et al. J. Biol. Chem., 268 (1993),pp. 12504-12511
|
[9] |
Díez-Fernández, C., Hu, L., Cervera, J. et al. Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function Mol. Genet. Metab., 112 (2014),pp. 123-132
|
[10] |
Díez-Fernández, C., Martínez, A.I., Pekkala, S. et al. Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool Hum. Mutat., 34 (2013),pp. 1149-1159
|
[11] |
Eeds, A.M., Hall, L.D., Yadav, M. et al. The frequent observation of evidence for nonsense-mediated decay in RNA from patients with carbamyl phosphate synthetase I deficiency Mol. Genet. Metab., 89 (2006),pp. 80-86
|
[12] |
Freeman, J.M., Nicholson, J.F., Masland, W.S. et al. Ammonia intoxication due to a defect in urea synthesis J. Pediatr., 65 (1964),pp. 1039-1040
|
[13] |
Funghini, S., Donati, M.A., Pasquini, E. et al. Hum. Mutat., 22 (2003),pp. 340-341
|
[14] |
Gelehrter, T.D., Snodgrass, P.J. Lethal neonatal deficiency of carbamyl phosphate synthetase N. Engl. J. Med., 290 (1974),pp. 430-433
|
[15] |
Häberle, J., Rubio, V.
|
[16] |
Häberle, J., Schmidt, E., Pauli, S. et al. Gene structure of human carbamylphosphate synthetase 1 and novel mutations in patients with neonatal onset Hum. Mutat., 21 (2003),p. 444
|
[17] |
Häberle, J., Shschelochkov, O.A., Wand, J. et al. Molecular defects in human carbamoyl phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations Hum. Mutat., 32 (2011),pp. 579-589
|
[18] |
Haraguchi, Y., Uchino, T., Takiguchi, M. et al. Cloning and sequence of a cDNA encoding human carbamyl phosphate synthetase I: molecular analysis of hyperammonemia Gene, 107 (1991),pp. 335-340
|
[19] |
Hong, J., Salo, W.L., Lusty, C.J. et al. Carbamyl phosphate synthetase III, an evolutionary intermediate in the transition between glutamine-dependent and ammonia-dependent carbamyl phosphate synthetases J. Mol. Biol., 243 (1994),pp. 131-140
|
[20] |
Krissinel, E., Henrick, K. Inference of macromolecular assemblies from crystalline state J. Mol. Biol., 372 (2007),pp. 774-797
|
[21] |
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature, 227 (1970),pp. 680-685
|
[22] |
Larkin, M.A., Blackshields, G., Brown, N.P. et al. Clustal W and Clustal X version 2.0 Bioinformatics, 23 (2007),pp. 2947-2948
|
[23] |
Li, B., Krishnan, V.G., Mort, M.E. et al. Automated interference of molecular mechanisms of disease from amino acid substitutions Bioinformatics, 25 (2009),pp. 2744-2750
|
[24] |
Martínez, A.I., Pérez-Arellano, I., Pekkala, S. et al. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency Mol. Genet. Metab., 101 (2010),pp. 311-323
|
[25] |
McReynolds, J.W., Crowley, B., Mahoney, M.J. et al. Autosomal recessive inheritance of human mitochondrial carbamyl phosphate synthetase deficiency Am. J. Hum. Genet., 33 (1981),pp. 345-353
|
[26] |
Meister, A. Adv. Enzymol. Relat. Areas Mol. Biol., 62 (1989),pp. 315-374
|
[27] |
Morita, T., Mori, M., Tatibana, M. Regulation of N-acetyl-L-glutamate degradation in mammalian liver J. Biochem., 91 (1982),pp. 563-569
|
[28] |
Nuzum, C.T., Snodgrass, P.J.
|
[29] |
Nyunoya, H., Broglie, K.E., Widgren, E.E. et al. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat J. Biol. Chem., 260 (1985),pp. 9346-9356
|
[30] |
Pekkala, S., Martínez, A.I., Barcelona, B. et al. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase Biochem. J., 424 (2009),pp. 211-220
|
[31] |
Pekkala, S., Martínez, A.I., Barcelona, B. et al. Understanding carbamoyl-phosphate synthetase 1 (CPS1) deficiency by using expression studies and structure-based analysis Hum. Mutat., 31 (2010),pp. 801-808
|
[32] |
Rodriguez-Aparicio, L.B., Guadalajara, A.M., Rubio, V. Physical location of the site for N-acetyl-L-glutamate, the allosteric activator of carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal domain Biochemistry, 28 (1989),pp. 3070-3074
|
[33] |
Rubio, V., Britton, H.G., Grisolia, S. Mitochondrial carbamoyl phosphate synthetase activity in the absence of N-acetyl-L-glutamate. Mechanism of activation by this cofactor Eur. J. Biochem., 134 (1983),pp. 337-343
|
[34] |
Rubio, V., Grisolía, S. Treating urea cycle defects Nature, 292 (1981),p. 496
|
[35] |
Rubio, V., Ramponi, G., Grisolia, S. Carbamoyl phosphate synthetase I of human liver. Purification, some properties and immunological cross-reactivity with the rat liver enzyme Biochim. Biophys. Acta, 659 (1981),pp. 150-160
|
[36] |
Shigesada, K., Aoyagi, K., Tatibana, M. Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver Eur. J. Biochem., 85 (1978),pp. 385-391
|
[37] |
Sonoda, T., Tatibana, M. Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme J. Biol. Chem., 258 (1983),pp. 9839-9844
|
[38] |
Stewart, P.M., Walser, M. Short term regulation of ureagenesis J. Biol. Chem., 255 (1980),pp. 5270-5280
|
[39] |
Summar, M.L. Molecular genetic research into carbamoyl-phosphate synthase I: molecular defects and linkage markers J. Inherit. Metab. Dis., 21 (1998),pp. 30-39
|
[40] |
Summar, M.L., Hall, L.D., Eeds, A.M. et al. Characterization of genomic structure and polymorphisms in the human carbamyl phosphate synthetase I gene Gene, 311 (2003),pp. 51-57
|
[41] |
Summar, M.L., Koelker, S., Freedenberg, D. et al. The incidence of urea cycle disorders Mol. Genet. Metab., 110 (2013),pp. 179-180
|
[42] |
Thoden, J.B., Raushel, F.M., Benning, M.M. et al. The structure of carbamoyl phosphate synthetase determined to 2.1 Å resolution Acta Crystallogr. D. Biol. Crystallogr., 55 (1999),pp. 8-24
|
[43] |
Tuchman, M., Holzknecht, R.A. N-acetylglutamate content in liver and gut of normal and fasted mice, normal human livers, and livers of individuals with carbamyl phosphate synthetase or ornithine transcarbamylase deficiency Pediatr. Res., 27 (1990),pp. 408-412
|
[44] |
Uchino, T., Endo, F., Matsuda, I. Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan J. Inherit. Metab. Dis., 21 (1998),pp. 151-159
|
[45] |
Verdonk, M.L., Cole, J.C., Hartshorn, M.J. et al. Improved protein-ligand docking using GOLD Proteins, 52 (2003),pp. 609-623
|
[46] |
Xie, Y., Ihsanawati, K., Kishishita, S. et al.
|