5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 5
May  2015
Turn off MathJax
Article Contents

The Study of Carbamoyl Phosphate Synthetase 1 Deficiency Sheds Light on the Mechanism for Switching On/Off the Urea Cycle

doi: 10.1016/j.jgg.2015.03.009
More Information
  • Corresponding author: E-mail address: rubio@ibv.csic.es (Vicente Rubio)
  • Received Date: 2014-10-31
  • Accepted Date: 2015-03-25
  • Rev Recd Date: 2015-03-22
  • Available Online: 2015-04-01
  • Publish Date: 2015-05-20
  • Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is an inborn error of the urea cycle having autosomal (2q34) recessive inheritance that can cause hyperammonemia and neonatal death or mental retardation. We analyzed the effects on CPS1 activity, kinetic parameters and enzyme stability of missense mutations reported in patients with CPS1 deficiency that map in the 20-kDa C-terminal domain of the enzyme. This domain turns on or off the enzyme depending on whether the essential allosteric activator of CPS1, N-acetyl-L-glutamate (NAG), is bound or is not bound to it. To carry out the present studies, we exploited a novel system that allows the expressionin vitro and the purification of human CPS1, thus permitting site-directed mutagenesis. These studies have clarified disease causation by individual mutations, identifying functionally important residues, and revealing that a number of mutations decrease the affinity of the enzyme for NAG. Patients with NAG affinity-decreasing mutations might benefit from NAG site saturation therapy with N-carbamyl-L-glutamate (a registered drug, the analog of NAG). Our results, together with additional present and prior site-directed mutagenesis data for other residues mapping in this domain, suggest an NAG-triggered conformational change in the β4-α4 loop of the C-terminal domain of this enzyme. This change might be an early event in the NAG activation process. Molecular dynamics simulations that were restrained according to the observed effects of the mutations are consistent with this hypothesis, providing further backing for this structurally plausible signaling mechanism by which NAG could trigger urea cycle activation via CPS1.
  • loading
  • [1]
    Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Methods, 7 (2010),pp. 248-249
    [2]
    Alonso, E., Cervera, J., Garcia-Espana, A. et al. Oxidative inactivation of carbamoyl phosphate synthetase (ammonia). Mechanism and sites of oxidation, degradation of the oxidized enzyme, and inactivation by glycerol, EDTA, and thiol protecting agents J. Biol. Chem., 267 (1992),pp. 4524-4532
    [3]
    Alonso, E., Rubio, V. Affinity cleavage of carbamoyl-phosphate synthetase I localizes regions of the enzyme interacting with the molecule of ATP that phosphorylates carbamate Eur. J. Biochem., 229 (1995),pp. 377-384
    [4]
    Bender, D.A.
    [5]
    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976),pp. 248-254
    [6]
    Brusilow, S.W., Horwich, A.L.
    [7]
    Case, D.A., , Darden, T., Gohlke, H. et al. The Amber biomolecular simulation programs J. Computat. Chem., 26 (2005),pp. 1668-1688
    [8]
    Cervera, J., Conejero-Lara, F., Ruiz-Sanz, J. et al. J. Biol. Chem., 268 (1993),pp. 12504-12511
    [9]
    Díez-Fernández, C., Hu, L., Cervera, J. et al. Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function Mol. Genet. Metab., 112 (2014),pp. 123-132
    [10]
    Díez-Fernández, C., Martínez, A.I., Pekkala, S. et al. Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool Hum. Mutat., 34 (2013),pp. 1149-1159
    [11]
    Eeds, A.M., Hall, L.D., Yadav, M. et al. The frequent observation of evidence for nonsense-mediated decay in RNA from patients with carbamyl phosphate synthetase I deficiency Mol. Genet. Metab., 89 (2006),pp. 80-86
    [12]
    Freeman, J.M., Nicholson, J.F., Masland, W.S. et al. Ammonia intoxication due to a defect in urea synthesis J. Pediatr., 65 (1964),pp. 1039-1040
    [13]
    Funghini, S., Donati, M.A., Pasquini, E. et al. Hum. Mutat., 22 (2003),pp. 340-341
    [14]
    Gelehrter, T.D., Snodgrass, P.J. Lethal neonatal deficiency of carbamyl phosphate synthetase N. Engl. J. Med., 290 (1974),pp. 430-433
    [15]
    Häberle, J., Rubio, V.
    [16]
    Häberle, J., Schmidt, E., Pauli, S. et al. Gene structure of human carbamylphosphate synthetase 1 and novel mutations in patients with neonatal onset Hum. Mutat., 21 (2003),p. 444
    [17]
    Häberle, J., Shschelochkov, O.A., Wand, J. et al. Molecular defects in human carbamoyl phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations Hum. Mutat., 32 (2011),pp. 579-589
    [18]
    Haraguchi, Y., Uchino, T., Takiguchi, M. et al. Cloning and sequence of a cDNA encoding human carbamyl phosphate synthetase I: molecular analysis of hyperammonemia Gene, 107 (1991),pp. 335-340
    [19]
    Hong, J., Salo, W.L., Lusty, C.J. et al. Carbamyl phosphate synthetase III, an evolutionary intermediate in the transition between glutamine-dependent and ammonia-dependent carbamyl phosphate synthetases J. Mol. Biol., 243 (1994),pp. 131-140
    [20]
    Krissinel, E., Henrick, K. Inference of macromolecular assemblies from crystalline state J. Mol. Biol., 372 (2007),pp. 774-797
    [21]
    Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature, 227 (1970),pp. 680-685
    [22]
    Larkin, M.A., Blackshields, G., Brown, N.P. et al. Clustal W and Clustal X version 2.0 Bioinformatics, 23 (2007),pp. 2947-2948
    [23]
    Li, B., Krishnan, V.G., Mort, M.E. et al. Automated interference of molecular mechanisms of disease from amino acid substitutions Bioinformatics, 25 (2009),pp. 2744-2750
    [24]
    Martínez, A.I., Pérez-Arellano, I., Pekkala, S. et al. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency Mol. Genet. Metab., 101 (2010),pp. 311-323
    [25]
    McReynolds, J.W., Crowley, B., Mahoney, M.J. et al. Autosomal recessive inheritance of human mitochondrial carbamyl phosphate synthetase deficiency Am. J. Hum. Genet., 33 (1981),pp. 345-353
    [26]
    Meister, A. Adv. Enzymol. Relat. Areas Mol. Biol., 62 (1989),pp. 315-374
    [27]
    Morita, T., Mori, M., Tatibana, M. Regulation of N-acetyl-L-glutamate degradation in mammalian liver J. Biochem., 91 (1982),pp. 563-569
    [28]
    Nuzum, C.T., Snodgrass, P.J.
    [29]
    Nyunoya, H., Broglie, K.E., Widgren, E.E. et al. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat J. Biol. Chem., 260 (1985),pp. 9346-9356
    [30]
    Pekkala, S., Martínez, A.I., Barcelona, B. et al. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase Biochem. J., 424 (2009),pp. 211-220
    [31]
    Pekkala, S., Martínez, A.I., Barcelona, B. et al. Understanding carbamoyl-phosphate synthetase 1 (CPS1) deficiency by using expression studies and structure-based analysis Hum. Mutat., 31 (2010),pp. 801-808
    [32]
    Rodriguez-Aparicio, L.B., Guadalajara, A.M., Rubio, V. Physical location of the site for N-acetyl-L-glutamate, the allosteric activator of carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal domain Biochemistry, 28 (1989),pp. 3070-3074
    [33]
    Rubio, V., Britton, H.G., Grisolia, S. Mitochondrial carbamoyl phosphate synthetase activity in the absence of N-acetyl-L-glutamate. Mechanism of activation by this cofactor Eur. J. Biochem., 134 (1983),pp. 337-343
    [34]
    Rubio, V., Grisolía, S. Treating urea cycle defects Nature, 292 (1981),p. 496
    [35]
    Rubio, V., Ramponi, G., Grisolia, S. Carbamoyl phosphate synthetase I of human liver. Purification, some properties and immunological cross-reactivity with the rat liver enzyme Biochim. Biophys. Acta, 659 (1981),pp. 150-160
    [36]
    Shigesada, K., Aoyagi, K., Tatibana, M. Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver Eur. J. Biochem., 85 (1978),pp. 385-391
    [37]
    Sonoda, T., Tatibana, M. Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme J. Biol. Chem., 258 (1983),pp. 9839-9844
    [38]
    Stewart, P.M., Walser, M. Short term regulation of ureagenesis J. Biol. Chem., 255 (1980),pp. 5270-5280
    [39]
    Summar, M.L. Molecular genetic research into carbamoyl-phosphate synthase I: molecular defects and linkage markers J. Inherit. Metab. Dis., 21 (1998),pp. 30-39
    [40]
    Summar, M.L., Hall, L.D., Eeds, A.M. et al. Characterization of genomic structure and polymorphisms in the human carbamyl phosphate synthetase I gene Gene, 311 (2003),pp. 51-57
    [41]
    Summar, M.L., Koelker, S., Freedenberg, D. et al. The incidence of urea cycle disorders Mol. Genet. Metab., 110 (2013),pp. 179-180
    [42]
    Thoden, J.B., Raushel, F.M., Benning, M.M. et al. The structure of carbamoyl phosphate synthetase determined to 2.1 Å resolution Acta Crystallogr. D. Biol. Crystallogr., 55 (1999),pp. 8-24
    [43]
    Tuchman, M., Holzknecht, R.A. N-acetylglutamate content in liver and gut of normal and fasted mice, normal human livers, and livers of individuals with carbamyl phosphate synthetase or ornithine transcarbamylase deficiency Pediatr. Res., 27 (1990),pp. 408-412
    [44]
    Uchino, T., Endo, F., Matsuda, I. Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan J. Inherit. Metab. Dis., 21 (1998),pp. 151-159
    [45]
    Verdonk, M.L., Cole, J.C., Hartshorn, M.J. et al. Improved protein-ligand docking using GOLD Proteins, 52 (2003),pp. 609-623
    [46]
    Xie, Y., Ihsanawati, K., Kishishita, S. et al.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return