5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 7
Jul.  2015
Turn off MathJax
Article Contents

The PI3K/AKT Pathway and Renal Cell Carcinoma

doi: 10.1016/j.jgg.2015.03.003
More Information
  • Corresponding author: E-mail address: gmills@mdanderson.org (Gordon B. Mills); E-mail address: zding@mdanderson.org (Zhiyong Ding)
  • Received Date: 2014-12-18
  • Accepted Date: 2015-03-11
  • Rev Recd Date: 2015-03-03
  • Available Online: 2015-03-19
  • Publish Date: 2015-07-20
  • The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is genetically targeted in more pathway components and in more tumor types than any other growth factor signaling pathway, and thus is frequently activated as a cancer driver. More importantly, the PI3K/AKT pathway is composed of multiple bifurcating and converging kinase cascades, providing many potential targets for cancer therapy. Renal cell carcinoma (RCC) is a high-risk and high-mortality cancer that is notoriously resistant to traditional chemotherapies or radiotherapies. The PI3K/AKT pathway is modestly mutated but highly activated in RCC, representing a promising drug target. Indeed, PI3K pathway inhibitors of the rapalog family are approved for use in RCC. Recent large-scale integrated analyses of a large number of patients have provided a molecular basis for RCC, reiterating the critical role of the PI3K/AKT pathway in this cancer. In this review, we summarize the genetic alterations of the PI3K/AKT pathway in RCC as indicated in the latest large-scale genome sequencing data, as well as treatments for RCC that target the aberrant activated PI3K/AKT pathway.
  • loading
  • [1]
    Agoulnik, I.U., Hodgson, M.C., Bowden, W.A. et al. INPP4B: the new kid on the PI3K block Oncotarget, 2 (2011),pp. 321-328
    [2]
    Akbani, R., Ng, P.K.S., Werner, H.M.J. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas Nat. Commun., 5 (2014),p. 3887
    [3]
    Alessi, D.R., James, S.R., Downes, C.P. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B α Curr. Biol., 7 (1997),pp. 261-269
    [4]
    Andjelkovic, M., Alessi, D.R., Meier, R. et al. Role of translocation in the activation and function of protein kinase B J. Biol. Chem., 272 (1997),pp. 31515-31524
    [5]
    Auger, K.R., Serunian, L.A., Soltoff, S.P. et al. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells Cell, 57 (1989),pp. 167-175
    [6]
    Bernardi, R., Guernah, I., Jin, D. et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR Nature, 442 (2006),pp. 779-785
    [7]
    Bhatt, J.R., Finelli, A. Landmarks in the diagnosis and treatment of renal cell carcinoma Nat. Rev. Urol., 11 (2014),pp. 517-525
    [8]
    Bozulic, L., Surucu, B., Hynx, D. et al. PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival Mol. Cell, 30 (2008),pp. 203-213
    [9]
    Brazil, D.P., Yang, Z.Z., Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts Trends Biochem. Sci., 29 (2004),pp. 233-242
    [10]
    Brugge, J., Hung, M.-C., Mills, G.B. A new mutational AKTivation in the PI3K Pathway Cancer Cell, 12 (2007),pp. 104-107
    [11]
    Cai, S.-L., Tee, A.R., Short, J.D. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning J. Cell Biol., 173 (2006),pp. 279-289
    [12]
    Campbell, I.G., Russell, S.E., Choong, D.Y. et al. Cancer Res., 64 (2004),pp. 7678-7681
    [13]
    Carpten, J.D., Faber, A.L., Horn, C. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer Nature, 448 (2007),pp. 439-444
    [14]
    Cerami, E., Gao, J., Dogrusoz, U. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data Cancer Discov., 2 (2012),pp. 401-404
    [15]
    Cheng, J.Q., Godwin, A.K., Bellacosa, A. et al. Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 9267-9271
    [16]
    Cheng, J.Q., Ruggeri, B., Klein, W.M. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 3636-3641
    [17]
    Cheung, L.W.T., Hennessy, B.T., Li, J. et al. Cancer Discov., 1 (2011),pp. 170-185
    [18]
    Cheung, Lydia W.T., Yu, S., Zhang, D. et al. Cancer Cell, 26 (2014),pp. 479-494
    [19]
    Cho, D. Novel targeting of phosphatidylinositol 3-kinase and mammalian target of rapamycin in renal cell carcinoma Cancer J., 19 (2013),pp. 311-315
    [20]
    Cohen, M.M. Am. J. Med. Genet. A, 161 (2013),pp. 2931-2937
    [21]
    Davies, M.A., Stemke-Hale, K., Tellez, C. et al. Br. J. Cancer, 99 (2008),pp. 1265-1268
    [22]
    Davis, C.F., Ricketts, C.J., Wang, M. et al. The somatic genomic landscape of chromophobe renal cell carcinoma Cancer Cell, 26 (2014),pp. 319-330
    [23]
    Dawood, M., Mills, G.B., Ding, Z. Shrewd AKT regulation to survive Oncoscience, 1 (2014),pp. 113-114
    [24]
    Dillon, R.L., Marcotte, R., Hennessy, B.T. et al. Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression Cancer Res., 69 (2009),pp. 5057-5064
    [25]
    Ding, Z., German, P., Bai, S. et al. Agents that stabilize mutated von Hippel-Lindau (VHL) protein: results of a high-throughput screen to identify compounds that modulate VHL proteostasis J. Biomol. Screen, 17 (2012),pp. 572-580
    [26]
    Ding, Z., German, P., Bai, S. et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein Cancer Res., 74 (2014),pp. 3127-3136
    [27]
    Dutcher, J.P. Recent developments in the treatment of renal cell carcinoma Ther. Adv. Urol., 5 (2013),pp. 338-353
    [28]
    Endersby, R., Zhu, X., Hay, N. et al. Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model Cancer Res., 71 (2011),pp. 4106-4116
    [29]
    Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations Nat. Rev. Cancer, 9 (2009),pp. 550-562
    [30]
    Figlin, R.A., Kaufmann, I., Brechbiel, J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors Int. J. Cancer, 133 (2013),pp. 788-796
    [31]
    Fisher, R., Horswell, S., Rowan, A. et al. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution Genome Biol., 15 (2014),p. 433
    [32]
    Frew, I.J., Moch, H. A clearer view of the molecular complexity of clear cell renal cell carcinoma Annu. Rev. Pathol., 10 (2015),pp. 263-289
    [33]
    Fruman, D.A., Meyers, R.E., Cantley, L.C. Phosphoinositide kinases Annu. Rev. Biochem., 67 (1998),pp. 481-507
    [34]
    Fruman, D.A., Rommel, C. PI3K and cancer: lessons, challenges and opportunities Nat. Rev. Drug Discov., 13 (2014),pp. 140-156
    [35]
    Gao, J., Aksoy, B.A., Dogrusoz, U. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal Sci. Signal., 6 (2013),pp. 1-19
    [36]
    Gao, M., Liang, J., Lu, Y. et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation Oncogene, 33 (2014),pp. 745-755
    [37]
    Gerlinger, M., Horswell, S., Larkin, J. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing Nat. Genet., 46 (2014),pp. 225-233
    [38]
    Gerlinger, M., Rowan, A.J., Horswell, S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing N. Engl. J. Med., 366 (2012),pp. 883-892
    [39]
    Gewinner, C., Wang, Z.C., Richardson, A. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling Cancer Cell, 16 (2009),pp. 115-125
    [40]
    Girardi, C., James, P., Zanin, S. et al. Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions BBA- Mol. Cell Res., 1843 (2014),pp. 1865-1874
    [41]
    Grabiner, B.C., Nardi, V., Birsoy, K. et al. A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity Cancer Discov., 4 (2014),pp. 554-563
    [42]
    Guo, H., Gao, M., Lu, Y. et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules Oncogene, 33 (2014),pp. 3463-3472
    [43]
    Haar, E.V., Lee, S.-i., Bandhakavi, S. et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 Nat. Cell Biol., 9 (2007),pp. 316-323
    [44]
    Hay, N., Sonenberg, N. Upstream and downstream of mTOR Genes Dev., 18 (2004),pp. 1926-1945
    [45]
    Hennessy, B.T., Smith, D.L., Ram, P.T. et al. Exploiting the PI3K/AKT pathway for cancer drug discovery Nat. Rev. Drug Discov., 4 (2005),pp. 988-1004
    [46]
    Hers, I., Vincent, E.E., Tavaré, J.M. Akt signalling in health and disease Cell. Signal., 23 (2011),pp. 1515-1527
    [47]
    Hornbeck, P.V., Kornhauser, J.M., Tkachev, S. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse Nucleic Acids Res., 40 (2012),pp. D261-D270
    [48]
    Huang, D., Ding, Y., Li, Y. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma Cancer Res., 70 (2010),pp. 1053-1062
    [49]
    Ikenoue, T., Inoki, K., Yang, Q. et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling EMBO J., 27 (2008),pp. 1919-1931
    [50]
    Isaacs, J.S. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability Cancer Cell, 8 (2005),pp. 143-153
    [51]
    Jaiswal, B.S., Janakiraman, V., Kljavin, N.M. et al. Somatic mutations in p85α promote tumorigenesis through Class IA PI3K activation Cancer Cell, 16 (2009),pp. 463-474
    [52]
    Jonasch, E., Futreal, P.A., Davis, I.J. et al. State of the science: an update on renal cell carcinoma Mol. Cancer Res., 10 (2012),pp. 859-880
    [53]
    Jonasch, E., Gao, J., Rathmell, W.K. Renal cell carcinoma Br. Med. J., 349 (2014),p. g4797
    [54]
    Kang, S., Bader, A.G., Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 802-807
    [55]
    Lawrence, M.S., Stojanov, P., Mermel, C.H. et al. Discovery and saturation analysis of cancer genes across 21 tumour types Nature, 505 (2014),pp. 495-501
    [56]
    Lee, C.M., Hickey, M.M., Sanford, C.A. et al. Oncogene, 28 (2009),pp. 1694-1705
    [57]
    Li, J., Lu, Y., Akbani, R. et al. TCPA: a resource for cancer functional proteomics data Nat. Methods, 10 (2013),pp. 1046-1047
    [58]
    Lian, J.H., Wang, W.H., Wang, J.Q. et al. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway Asian Pac. J. Cancer Prev., 14 (2013),pp. 5017-5021
    [59]
    Liang, H., Cheung, L.W., Li, J. et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer Genome Res., 22 (2012),pp. 2120-2129
    [60]
    Linehan, W.M., Srinivasan, R., Schmidt, L.S. The genetic basis of kidney cancer: a metabolic disease Nat. Rev. Urol., 7 (2010),pp. 277-285
    [61]
    Lu, Z.H., Shvartsman, M.B., Lee, A.Y. et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis Cancer Res., 70 (2010),pp. 3287-3298
    [62]
    Mahajan, K., Coppola, D., Challa, S. et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation PLoS One, 5 (2010),p. e9646
    [63]
    Manning, B.D., Cantley, L.C. Rheb fills a GAP between TSC and TOR Trends Biochem. Sci., 28 (2003),pp. 573-576
    [64]
    Manning, B.D., Cantley, L.C. AKT/PKB signaling: navigating downstream Cell, 129 (2007),pp. 1261-1274
    [65]
    Mao, M., Fang, X., Lu, Y. et al. Inhibition of growth-factor-induced phosphorylation and activation of protein kinase B/Akt by atypical protein kinase C in breast cancer cells Biochem. J., 352 (2000),pp. 475-482
    [66]
    Maxwell, P.H., Wiesener, M.S., Chang, G.W. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis Nature, 399 (1999),pp. 271-275
    [67]
    Murph, M., Smith, D., Hennessy, B. et al.
    [68]
    Nickerson, M.L., Jaeger, E., Shi, Y. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors Clin. Cancer Res., 14 (2008),pp. 4726-4734
    [69]
    O'Reilly, K.E., Rojo, F., She, Q.B. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt Cancer Res., 66 (2006),pp. 1500-1508
    [70]
    Oh, W.J., Wu, C.C., Kim, S.J. et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide EMBO J., 29 (2010),pp. 3939-3951
    [71]
    Powell, D.J., Hajduch, E., Kular, G. et al. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCζ-dependent mechanism Mol. Cell Biol., 23 (2003),pp. 7794-7808
    [72]
    Randall, J.M., Millard, F., Kurzrock, R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art Cancer Metastasis Rev., 33 (2014),pp. 1109-1124
    [73]
    Rechsteiner, M.P., von Teichman, A., Nowicka, A. et al. Cancer Res., 71 (2011),pp. 5500-5511
    [74]
    Roe, J.S., Kim, H., Lee, S.M. et al. p53 stabilization and transactivation by a von Hippel-Lindau protein Mol. Cell, 22 (2006),pp. 395-405
    [75]
    Ruderman, N.B., Kapeller, R., White, M.F. et al. Activation of phosphatidylinositol 3-kinase by insulin Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 1411-1415
    [76]
    Samuels, Y., , Schmidt-Kittler, O., Cummins, J.M. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells Cancer Cell, 7 (2005),pp. 561-573
    [77]
    Samuels, Y., Wang, Z., Bardelli, A. et al. Science, 304 (2004),p. 554
    [78]
    Sarbassov, D.D., Guertin, D.A., Ali, S.M. et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex Science, 307 (2005),pp. 1098-1101
    [79]
    Sato, Y., Yoshizato, T., Shiraishi, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma Nat. Genet., 45 (2013),pp. 860-867
    [80]
    Sengupta, S., Peterson, T.R., Sabatini, D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress Mol. Cell, 40 (2010),pp. 310-322
    [81]
    Shayesteh, L., Lu, Y., Kuo, W.L. et al. PIK3CA is implicated as an oncogene in ovarian cancer Nat. Genet., 21 (1999),pp. 99-102
    [82]
    Song, M.S., Salmena, L., Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor Nat. Rev. Mol. Cell Biol., 13 (2012),pp. 283-296
    [83]
    Stemke-Hale, K., Gonzalez-Angulo, A.M., Lluch, A. et al. Cancer Res., 68 (2008),pp. 6084-6091
    [84]
    Stransky, N., Cerami, E., Schalm, S. et al. The landscape of kinase fusions in cancer Nat. Commun., 5 (2014),pp. 1-10
    [85]
    Sun, M., Wang, G., Paciga, J.E. et al. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 Cells Am. J. Pathol., 159 (2001),pp. 431-437
    [86]
    The Cancer Genome Atlas Research, N Comprehensive molecular characterization of clear cell renal cell carcinoma Nature, 499 (2013),pp. 43-49
    [87]
    Tomlinson, I.P. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer Nat. Genet., 30 (2002),pp. 406-410
    [88]
    Toschi, A., Lee, E., Gadir, N. et al. Differential dependence of hypoxia-inducible factors 1 α and 2 α on mTORC1 and mTORC2 J. Biol. Chem., 283 (2008),pp. 34495-34499
    [89]
    Tremblay, F., Brule, S., Hee Um, S. et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 14056-14061
    [90]
    Twardowski, P.W., Mack, P.C., Papillary renal cell carcinoma: current progress and future directions Clin. Genitourin. Cancer, 12 (2014),pp. 74-79
    [91]
    Varela, I., Tarpey, P., Raine, K. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma Nature, 469 (2011),pp. 539-542
    [92]
    Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. et al. The emerging mechanisms of isoform-specific PI3K signalling Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 329-341
    [93]
    Xu, X., Wu, J., Li, S. et al. Mol. Cancer, 13 (2014),p. 109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return