5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 4
Apr.  2015
Turn off MathJax
Article Contents

The Performance of Whole Genome Amplification Methods and Next-Generation Sequencing for Pre-Implantation Genetic Diagnosis of Chromosomal Abnormalities

doi: 10.1016/j.jgg.2015.03.001
More Information
  • Corresponding author: E-mail address: david.cram@berrygenomics.com (David S. Cram); E-mail address: yqyao_ghpla@163.com (Yuanqing Yao)
  • Received Date: 2014-10-20
  • Accepted Date: 2015-03-08
  • Rev Recd Date: 2015-03-06
  • Available Online: 2015-03-14
  • Publish Date: 2015-04-20
  • Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA (15 pg) and single cells, we showed that the two PCR-based WGA systems SurePlex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification (MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing (CNV-Seq) was applied to single cell WGA products derived by either SurePlex or MALBAC amplification, we showed that known disease CNVs in the range of 3–15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either SurePlex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient's cohort for uterine transplantation.
  • These two authors contributed equally to this work.
  • loading
  • [1]
    Binder, V., Bartenhagen, C., Okpanyi, V. et al. A new workflow for whole-genome sequencing of single human cells Hum. Mutat., 35 (2014),pp. 1260-1270
    [2]
    Cai, H.Q., Liu, H.T., Shi, B. et al. Whole genome amplification and its application in forensic individual identification Yi Chuan, 32 (2010),pp. 1119-1125
    [3]
    Czyz, Z.T., Hoffmann, M., Schlimok, G. et al. Reliable single cell array CGH for clinical samples PLoS One, 9 (2014),p. e85907
    [4]
    de Bourcy, C.F., De Vlaminck, I., Kanbar, J.N. et al. A quantitative comparison of single-cell whole genome amplification methods PLoS One, 9 (2014),p. e105585
    [5]
    Dean, F.B., Hosono, S., Fang, L. et al. Comprehensive human genome amplification using multiple displacement amplification Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 5261-5266
    [6]
    Findlay, I., Ray, P., Quirke, P. et al. Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis Hum. Reprod., 10 (1995),pp. 1609-1618
    [7]
    Fiorentino, F., Biricik, A., Bono, S. et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos Fertil. Steril., 101 (2014),pp. 1375-1382
    [8]
    Fiorentino, F., Spizzichino, L., Bono, S. et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization Hum. Reprod., 26 (2011),pp. 1925-1935
    [9]
    Gill, P., Ghaemi, A. Nucleic acid isothermal amplification technologies: a review Nucleosides Nucleotides Nucleic Acids, 27 (2008),pp. 224-243
    [10]
    Handyside, A.H. 24-chromosome copy number analysis: a comparison of available technologies Fertil. Steril., 100 (2013),pp. 595-602
    [11]
    Hou, Y., Fan, W., Yan, L. et al. Genome analyses of single human oocytes Cell, 155 (2013),pp. 1492-1506
    [12]
    Li, H., Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform Bioinformatics, 26 (2010),pp. 589-595
    [13]
    Huang, J., Yan, L., Fan, W. et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos Fertil. Steril., 102 (2014),pp. 1685-1691
    [14]
    Liang, D., Lv, W., Wang, H. et al. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing Prenat. Diagn., 33 (2013),pp. 409-415
    [15]
    Liang, D., Peng, Y., Lv, W. et al. Copy number variation sequencing for comprehensive diagnosis of chromosome disease syndromes J. Mol. Diagn., 16 (2014),pp. 519-526
    [16]
    Munne, S. Preimplantation genetic diagnosis for aneuploidy and translocations using array comparative genomic hybridization Curr. Genomics, 13 (2012),pp. 463-470
    [17]
    Shen, J., Cram, D.S., Wu, W. et al. Reprod. Biomed. Online, 27 (2013),pp. 176-183
    [18]
    Telenius, H., Carter, N.P., Bebb, C.E. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer Genomics, 13 (1992),pp. 718-725
    [19]
    Tibshirani, R., Wang, P. Spatial smoothing and hot spot detection for CGH data using fused lasso Biostatistics, 9 (2008),pp. 18-29
    [20]
    Treff, N.R., Su, J., Tao, X. et al. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses Mol. Hum. Reprod., 17 (2011),pp. 335-343
    [21]
    Vanneste, E., Voet, T., Le Caignec, C. et al. Chromosome instability is common in human cleavage-stage embryos Nat. Med., 15 (2009),pp. 577-583
    [22]
    Voet, T., Vanneste, E., Van der Aa, N. et al. Breakage-fusion-bridge cycles leading to inv dup del occur in human cleavage stage embryos Hum. Mutat., 32 (2011),pp. 783-793
    [23]
    Wang, H., Wang, L., Ma, M. et al. A PGD pregnancy achieved by embryo copy number variation sequencing with confirmation by non-invasive prenatal diagnosis J. Genet. Genomics, 41 (2014),pp. 453-456
    [24]
    Wang, L., Cram, D.S., Shen, J. et al. Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos Biol. Reprod., 91 (2014),p. 37
    [25]
    Wang, L., Wang, X., Zhang, J. et al. Detection of chromosomal aneuploidy in human preimplantation embryos by next-generation sequencing Biol. Reprod., 90 (2014),p. 95
    [26]
    Wang, Y., Chen, Y., Tian, F. et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing Clin. Chem., 60 (2014),pp. 251-259
    [27]
    Wells, D., Kaur, K., Grifo, J. et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation J. Med. Genet., 51 (2014),pp. 553-562
    [28]
    Yin, X., Tan, K., Vajta, G. et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts Biol. Reprod., 88 (2013),p. 69
    [29]
    Yu, Z., Lu, S., Huang, Y. Microfluidic whole genome amplification device for single cell sequencing Anal. Chem., 86 (2014),pp. 9386-9390
    [30]
    Zhang, L., Cui, X., Schmitt, K. et al. Whole genome amplification from a single cell: implications for genetic analysis Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 5847-5851
    [31]
    Zheng, Y.M., Wang, N., Li, L. et al. Whole genome amplification in preimplantation genetic diagnosis J. Zhejiang Univ. Sci. B, 12 (2011),pp. 1-11
    [32]
    Zong, C., Lu, S., Chapman, A.R. et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell Science, 338 (2012),pp. 1622-1626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return